Stepwise Alignment for Constrained Language Model Policy Optimization

Akifumi Wachi^{*1}, Thien Q. Tran^{*1}, Rei Sato¹, Takumi Tanabe¹, Youhei Akimoto^{2,3} ¹LY Corporation (*Equal contribution) ²University of Tsukuba ³RIKEN AIP

Alignment of language models (LMs) is inherently multifaceted: Helpfulness vs. Harmlessness

We consider the following constrained LM alignment problem:

 $\max_{\pi} \mathbb{E}_{\rho,\pi} \left[r^{\star}(x,y) \right] - \beta \mathbb{D}_{\mathrm{KL}} \left[\pi(y \mid x) \parallel \pi_{\mathrm{ref}}(y \mid x) \right] \quad \text{subject to} \quad \mathbb{E}_{\rho,\pi} \left[g^{\star}(x,y) \right] \ge b.$

Typical objective of RLHF or DPO

SACPO: Stepwise Alignment for Constrained Policy Optimization

Key Idea: Reward alignment \rightarrow Safety Alignment (or vice versa)

We can use RL-free alignment algorithms (e.g., DPO, KTO) for each alignment

SACPO's stepwise approach 2 is theoretically justified!

SACPO is computationally efficient and stable!

Step 1: Reward Alignment

- Align an LM reference policy using reward data via an RL-free alignment algorithm (e.g., DPO, KTO)
- This step is same as typical alignment by DPO or KTO. For example,

 $\mathcal{L}_{\text{DPO}}(\pi_{\theta}, \pi_{\text{ref}}, \beta) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left| \log \beta \right|$

Step 2: Safety Realignment

- Realign the reward-aligned LM policy using safety data using DPO or KTO
- Note : λ^* is the optimal Lagrangian multiplier

 $\mathcal{L}_{\text{DPO}}(\pi_{\theta}, \pi_{r^{\star}}^{\star}, \beta/\lambda^{\star}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}_g} \left[\log q \right]$

	Step1 (reward alignment)	Step 2 (safety realignment)
Loss function	$\mathcal{L}_{ ext{DPO}}(\pi_{ heta},\pi_{ ext{ref}},eta)$	$\mathcal{L}_{ ext{DPO}}(\pi_{ heta},\pi^{\star}_{r^{\star}},eta/\lambda^{\star})$:
LM policy to be aligned	$\pi_{\rm ref}$ (typically SFT models)	$\pi_{r^{\star}}$ (reward-aligned LM)
KL penalty parameter	β	eta/λ^{\star}

Overview

Safety constraint

Detailed Steps

$$\left\{ \sigma \left(\beta \log \frac{\pi_{\theta}(y_w \mid x)}{\pi_{\text{ref}}(y_w \mid x)} - \beta \log \frac{\pi_{\theta}(y_l \mid x)}{\pi_{\text{ref}}(y_l \mid x)} \right) \right\}$$

$$\sigma\left(\frac{\beta}{\lambda^{\star}}\log\frac{\pi_{\theta}(y_w \mid x)}{\pi_{r^{\star}}^{\star}(y_w \mid x)} - \frac{\beta}{\lambda^{\star}}\log\frac{\pi_{\theta}(y_l \mid x)}{\pi_{r^{\star}}^{\star}(y_l \mid x)}\right)\right]$$

Correspondence: akifumi.wachi@lycorp.co.jp

Why is SACPO Theoretically Justified?

The optimal policy of our constrained LM alignment problem satisfies:

Reward-aligned LM policy

The optimal policy can be obtained by realigning reward-aligned LM policy regarding the safety function with a KL penalty parameter β/λ^* .

Practical SACPO (P-SACPO)

It is still costly to apply DPO (or KTO) w/ various β/λ^* in SACPO Control the balance between reward and safety by tuning the merging ratio!

a conservatively large λ

Conservatively

Code & Models

Paper

Safety function