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Alignment of language models (LMs) is inherently multifaceted: The optimal policy of our constrained LM alignment problem satisfies:
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Typical objective of RLHF or DPO Safety constraint Reward-aligned LM policy Safety function
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Key Idea: Reward alignment — Safety Alignment (or vice versa)
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Step 1: Reward Alignment

« Align an LM reference policy using reward data via an RL-free alignment
algorithm (e.qg., DPO, KTO)
« This step is same as typical alignment by DPO or KTO. For example,

« Compare the performance of (P-)SACPO with Safe RLHF
« Reward = Helpfulness (H), Safety = Harmlessness (S)
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