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Reinforcement Learning (RL)
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Safety Issues in RL
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Safe RL in This Talk

• Safe RL is a broad topic by definition.

• Garcia and Fernández (2015) classified optimization criteria into 4 groups:

1. Constrained criterion

2. Worst-case criterion

3. Risk-sensitive criterion

4. Others (e.g., r-squared, value-at-risk)

• This talk focuses on safe RL based on the constrained criterion.
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Garcıa and Fernández. "A comprehensive survey on safe reinforcement learning." JMLR 16.1 (2015): 1437-1480.



Safe RL with Constrained Criterion
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subject to Safety Constraint

Typical RL objective
(Expected cumulative reward)



Potential Applications of Safe RL
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Diverse Required Safety Levels
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Diverse Constraint Formulations
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subject to Safety Constraint

Typical RL objective

Diverse constraint formulations depending on
the applications or required safety levels

Expectation or Almost surely

Cumulative or Instantaneous



Common Constraint Representations
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Problem Formulation 1 (Expected Cumulative Safety Constraint)

Same
Structure

subject to 

Safety ConstraintTypical RL objective



Common Constraint Representations
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subject to 

Safety ConstraintTypical RL objective

Problem Formulation 1 (Expected Cumulative Safety Constraint)

• One of the most popular formulations.

• Many well-known algorithms are based on this formulation.

• CPO[1], {TRPO, PPO}-Lagrangian[2], RCPO[3], etc.

• Focus on the averaged performance → Relatively low required safety level

[1] Achiam+. Constrained policy optimization. In ICML, 2017.
[2] Ray+. Benchmarking safe exploration in deep reinforcement learning. arXiv preprint arXiv:1910.01708, 2019.
[3] Tessler+. Reward constrained policy optimization. In ICLR, 2019.



Common Constraint Representations
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Problem Formulation 2 (Almost Surely Cumulative Safety Constraint)

subject to 

Safety ConstraintTypical RL objective

• Require the constraint satisfaction with probability of 1 (i.e., almost surely).

• ℙ𝜋 is used rather than 𝔼𝜋.

• Higher required level of safety.

• Saute RL[1] algorithm is based on this formulation.

• Good theoretical properties + Empirical performance.

[1] Sootla+. Saute RL: Almost surely safe reinforcement learning using state augmentation. In ICML, 2022.



Common Constraint Representations
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Problem Formulation 3 (Almost Surely Instantaneous Safety Constraint)

subject to 

Safety ConstraintTypical RL objective

• Require the constraint satisfaction with probability of 1 at every time step.

• Very high required level of safety.

• Many algorithms are based on this formulation.

• SMbRL[1], RL-CBF[2], SafeMDP[3], SNO-MDP[4], etc.

[1] Berkenkamp+. Safe model-based reinforcement learning with stability guarantees. In NeurIPS, 2017.
[2] Cheng+. End-to-end safe reinforcement learning through barrier functions for safety-critical continuous control tasks. In AAAI, 2019
[3] Turchetta+. Safe exploration in finite Markov decision processes with Gaussian processes. In NeurIPS, 2016.
[4] Wachi and Sui. Safe reinforcement learning in constrained Markov decision processes. In ICML, 2020.



Typical Procedure of Safe RL
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Step 1: Problem Formulation

subject to Safety Constraint

Step 2: Policy Optimization

• Either use an existing algorithm suitable for
the problem setup or develop a new algorithm

• Diverse safety constraint representations



Issues of Previous Safe RL Research
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Step 1: Problem Formulation

subject to Safety Constraint

Step 2: Policy Optimization

• Diverse safety constraint representations

• Most safe RL researches have pursued SOTA performance

• Existing survey papers have focused on algorithms



Our Contributions
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Step 1: Problem Formulation

subject to Safety Constraint

• Diverse safety constraint representations

• Constraint formulation is the first step in safe RL

• Crucial to properly understand diverse constraint representations.

• Our paper provides comprehensive survey on Safe RL 
focusing on problem formulation in safe RL.
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List of representative algorithms
associated with each formulation
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Theoretical relations between each constraint representation



Conclusion (Take Home Messages)

• Safety is an important issue in RL

• Diverse problem settings → Diverse constraint representations

• Our paper provides

• Comprehensive survey of safe RL literature
from the perspective of constraint formulations

• Theoretical analysis on interrelations between each formulation
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Thank you!!

Contact: wachi.akifumi [at] gmail.com

Paper: https://arxiv.org/abs/2402.02025 

https://arxiv.org/abs/2402.02025
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