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Abstract
Safe reinforcement learning has been a promising
approach for optimizing the policy of an agent
that operates in safety-critical applications. In
this paper, we propose an algorithm, SNO-MDP,
that explores and optimizes Markov decision pro-
cesses under unknown safety constraints. Specifi-
cally, we take a stepwise approach for optimizing
safety and cumulative reward. In our method, the
agent first learns safety constraints by expanding
the safe region, and then optimizes the cumulative
reward in the certified safe region. We provide the-
oretical guarantees on both the satisfaction of the
safety constraint and the near-optimality of the cu-
mulative reward under proper regularity assump-
tions. In our experiments, we demonstrate the
effectiveness of SNO-MDP through two experi-
ments: one uses a synthetic data in a new, openly-
available environment named GP-SAFETY-GYM,
and the other simulates Mars surface exploration
by using real observation data.

1. Introduction
In many real applications, environmental hazards are first
detected in situ. For example, a planetary rover exploring
Mars does not obtain high-resolution images at the time of
its launch. In usual cases, after landing on Mars, the rover
takes close-up images or observes terrain data. Leverag-
ing the acquired data, ground operators identify whether
each position is safe. Hence, for fully automated operation,
an agent must autonomously explore the environment and
guarantee safety.

In most cases, however, guaranteeing safety (i.e., surviv-
ing) is not the primary objective. The optimal policy for
ensuring safety is often extremely conservative (e.g., stay at
the current position). Even though avoiding hazards is an
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essential requirement, the primary objective is nonetheless
to obtain rewards (e.g., scientific gain).

As a framework to solve this problem, safe reinforcement
learning (safe RL, Garcıa & Fernández (2015)) has recently
been noticed by the research community. The objective of
safe RL is to maximize the cumulative reward while guaran-
teeing or encouraging safety. Especially in problem settings
in which the reward and safety functions are unknown a
priori, however, a great deal of previous work (e.g., Wachi
et al. (2018)) theoretically guarantees the satisfaction of
the safety constraint, but the acquired policy is not neces-
sarily near-optimal in terms of the cumulative reward. In
this paper, we propose a safe RL algorithm that guarantees
a near-optimal cumulative reward while guaranteeing the
satisfaction of the safety constraint as well.

Related work. Conventional reinforcement learning lit-
erature has been agnostic with respect to safety, while pur-
suing efficiency and optimality of the cumulative reward.
Representatives of such work are probably approximately
correct Markov decision process (PAC-MDP) algorithms
(Brafman & Tennenholtz, 2002; Kearns & Singh, 2002;
Strehl et al., 2006). Algorithms with the PAC-MDP prop-
erty enable an agent to learn a near-optimal behavior with
a polynomial number of samples. In addition, Kolter &
Ng (2009) and Araya et al. (2012) proposed algorithms to
obtain an ε-close solution to the Bayesian optimal policy.

As the research community tries to apply RL algorithms
to real-world systems, however, safety issues have been
highlighted. RL algorithms inherently require an agent to
explore unknown state-action pairs, and algorithms that are
agnostic with respect to safety may execute unsafe actions
without deliberateness. Hence, it is important to develop
algorithms that guarantee safety even during training, at
least with high probability.

A notable approach is safe model-based RL (Berkenkamp
et al., 2017; Fisac et al., 2018). In this domain, safety is as-
sociated with a state constraint; thus, the resulting algorithm
is well suited for such contexts as a drone learning how to
hover. The parameters of a drone are not perfectly known
a priori, but we have prior knowledge on what states are
unsafe (e.g., a pitch angle of more than 50 degrees is unsafe).
In the field of control theory, constrained model predictive
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control (Mayne et al., 2000) has been popular. For example,
Aswani et al. (2013) proposed an algorithm for guaranteeing
robust feasibility and constraint satisfaction for a learned
model using constrained model predictive control.

On the other hand, safe model-free RL has also been suc-
cessful, especially in continuous control tasks. For exam-
ple, Achiam et al. (2017) proposed the constrained policy
optimization (CPO) algorithm while guaranteeing safety
in terms of constraint satisfaction. Moreover, Chow et al.
(2019) leveraged Lyapunov functions to learn policies with
high expected cumulative reward, while guaranteeing the
satisfaction of safety constraints.

Finally, several previous studies have addressed how to ex-
plore a safe space in an environment that is unknown a priori
(Sui et al., 2015; Turchetta et al., 2016). This type of prob-
lem setting is well-suited for cases such as a robot exploring
an uncertain environment (e.g., a planetary surface, a disas-
ter site). In particular, under the safety constraint, Sui et al.
(2018) proposed a stepwise algorithm for finding the maxi-
mum value of the reward function in a state-less setting (i.e.,
the bandit problem), while Wachi et al. (2018) proposed an
algorithm for maximizing the cumulative reward in an MDP
setting (i.e., the planning problem).

Our contributions. We propose a safe near-optimal MDP,
SNO-MDP algorithm, for achieving a near-optimal cumula-
tive reward while guaranteeing safety in a constrained MDP.
This algorithm first explores the safety function and then
optimizes the cumulative reward in the certified safe region.
We further propose an algorithm called Early Stopping of
Exploration of Safety (ES2) to achieve faster convergence
while maintaining probabilistic guarantees with respect to
both safety and reward. We examine SNO-MDP by apply-
ing PAC-MDP analysis and prove that, with high probability,
the acquired policy is near-optimal with respect to the cu-
mulative reward while guaranteeing safety. We build an
openly-available test-bed called GP-SAFETY-GYM for syn-
thetic experiments.1 The safety and efficiency of SNO-MDP
are then evaluated with two experiments: one in the GP-
SAFETY-GYM synthetic environment, and the other using
real Mars terrain data.

2. Problem Statement
A safety constrained MDP is defined as a tuple

M = 〈S,A, f, r, g, γ〉,

where S is a finite set of states {s},A is a finite set of actions
{a}, f : S × A → S is a deterministic state transition
function, r : S → (0, Rmax] is a bounded reward function,

1https://github.com/akifumi-wachi-4/safe_
near_optimal_mdp

g : S → R is a safety function, and γ ∈ R is a discount
factor. We assume that both the reward function r and the
safety function g are not known a priori. At every time step
t ∈ N, the agent must be in a “safe” state. More concretely,
for a state st, the safety function value g(st) must be above a
threshold h ∈ R; that is, the safety constraint is represented
as g(st) ≥ h.

A policy π : S → A maps a state to an action. The value of
a policy is evaluated according to the discounted cumulative
reward under the safety constraint. Let VM denote the value
function in the MDP, M. In summary, we represent our
problem as follows:

maximize: V πM(st) = E

[ ∞∑
τ=0

γτr(st+τ )

∣∣∣∣∣ st
]

subject to: g(st+τ ) ≥ h, ∀τ = [0,∞].

Difficulties. In conventional safety-constrained RL algo-
rithms, the safety function is assumed to be known a priori.
The key difference lies in the fact that we need to explore a
safety function that is unknown a priori while guaranteeing
satisfaction of the safety constraint.

However, it is intractable to solve the above problem without
further assumptions. First of all, without prior information
on the state-and-action pairs known to be safe, an agent
cannot take any viable action at the very beginning. Second,
if the safety function does not exhibit any regularity, then
the agent cannot infer the safety of decisions.

Assumptions. To overcome the difficulties mentioned
above, we adopt two assumptions from Sui et al. (2015)
and Turchetta et al. (2016). For the first difficulty, we sim-
ply assume that the agent starts in an initial set of states,
S0, that is known a priori to be safe. Second, we assume
regularity for the safety function. Formally speaking, we
assume that the state space S is endowed with a positive
definite kernel function, kg, and that the safety function
has a bounded norm in the associated reproducing kernel
Hilbert space (RKHS, Schölkopf & Smola (2001)). The
kernel function, kg is employed to capture the regularity
of the safety function. Finally, we further assume that the
safety function g is L-Lipschitz continuous with respect to
some distance metric d(·, ·) on S.

As with the safety function, we also assume that the reward
function has a bounded norm in the associated RKHS, and
that its regularity is captured by another positive definite
kernel function, kr.

The above assumptions allow us to characterize the reward
and safety functions by using Gaussian processes (GPs, see
Rasmussen (2004)). By using the GP models, the values
of r and g at unobserved states are predicted according to

https://github.com/akifumi-wachi-4/safe_near_optimal_mdp
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previously observed functions’ values. An advantage of
leveraging GPs is that we can obtain both optimistic and
pessimistic measurements of the two functions by using
the inferred means and variances. A GP is specified by its
mean, µ(s), and covariance, k(s, s′). The reward and safety
functions are thus modeled as

r(s) = GP(µr(s), kr(s, s′)),

g(s) = GP(µg(s), kg(s, s′)).

Without loss of generality, let µ(s) = 0 for all s ∈ S. For
the reward and safety functions, we respectively model the
observation noise as yr = r(s) + nr and yg = g(s) + ng,
where nr ∼ N (0, σ2

r) and ng ∼ N (0, σ2
g). The posteriors

over r and g are computed on the basis of t observations
at states {s1, . . . , st}. Then, for both the reward and safety
functions, the posterior mean, variance, and covariance are
respectively represented as

µt(s) = k>t (s)(Kt + σ2I)−1yt,

σt(s) = kt(s, s),

kt(s, s
′) = k(s, s′)− k>t (s)(Kt + σ2I)−1kt(s

′),

where kt(s) = [k(s1, s), . . . , k(st, s)]
>, and Kt is the

positive definite kernel matrix.

3. Background
We define two kinds of predicted safe spaces inferred by a
GP as in Turchetta et al. (2019). First, we consider a pes-
simistic safe space, which contains states identified as safe
with a greater probability than a pre-defined confidence level.
Second, we derive an optimistic safe space that includes all
states that may be safe with even a small probability.

Predicted pessimistic safe space. We use the notion of
a safe space in Turchetta et al. (2016) as a predicted pes-
simistic safe space. For the probabilistic safety guarantee,
two sets are defined. The first set, S−t , simply contains the
states that satisfy the safety constraint with high probability.
The second one, X−t , additionally considers the ability to
reach states in S−t (i.e., reachability) and the ability to return
to the previously identified safe set, X−t−1 (i.e., returnabil-
ity). The algorithm probabilistically guarantees safety by
allowing the agent to visit only states in X−t .

Safety is evaluated in terms of the confidence interval in-
ferred by the GP, which is represented as

Qt(s) := [µgt−1(s)± β1/2
t σgt−1(s)],

where βt ∈ R is a scaling factor for the required level of
safety. We consider the intersection of Qt up to iteration
t, which is defined as Ct(s) = Qt(s) ∩ Ct−1(s), where
C0(s) = [h,∞] for all s ∈ S0. The lower and upper

bounds on Ct(s) are denoted by lt(s) := minCt(s) and
ut(s) := maxCt(s), respectively.

The first set S−t contains states such that the safety constraint
is satisfied with high probability. It is formulated using
the lower bound of the safety function, l and the Lipshitz
constant, L, as follows:

S−t = {s ∈ S | ∃s′ ∈ X−t−1 : lt(s
′)− L · d(s, s′) ≥ h}.

Next, the reachable and returnable sets are considered. Even
though a state is in S−t , it might be surrounded by unsafe
states. Given a set X , the states reachable from X in one
step are given by Rreach(X) = X ∪ {s ∈ S | ∃s′ ∈ X, a ∈
A : s = f(s′, a)}. Even after arriving at a state with reach-
ability, the agent may not be able to move to another state
because of a lack of safe actions. Hence, before moving to a
state s, we consider whether or not there is at least one viable
path from s. The set of states from which the agent can re-
turn to a set X̄ through another set of states X in one step is
given by Rret(X, X̄) = X̄ ∪ {s ∈ X | ∃a ∈ A : f(s, a) ∈
X̄}. Thus, an n-step returnability operator is given by
Rnret(X, X̄) = Rret(X,R

n−1
ret (X, X̄)),with R1

ret(X, X̄) =
Rret(X, X̄). Finally, the set containing all the states that
can reach X̄ along an arbitrary long path in X is defined as
R̄ret(X, X̄) = limn→∞Rnret(X, X̄).

Finally, the desired pessimistic safe space, X−t is a subset
of S−t and also satisfies the reachability and returnability
constraints; that is,

X−t = {s ∈ S−t | s ∈ Rreach(X−t−1) ∩ R̄ret(S
−
t ,X−t−1)}.

Predicted optimistic safe space. As defined in Wachi
et al. (2018) and Turchetta et al. (2019), an optimistic safe
space has rich information for inferring the safety function.
LetX+

t denote the predicted optimistic safe space. Similarly
to X−t , the optimistic safe space, X+

t , is defined as

X+
t = {s ∈ S+

t | s ∈ Rreach(X+
t−1) ∩ R̄ret(S

+
t ,X+

t−1)},

where S+
t is the set of states that may satisfy the safety

constraint, which is written as

S+
t = {s ∈ S | ∃s′ ∈ X+

t−1 : ut(s
′)− L · d(s, s′) ≥ h}.

Intuitively, X+
t contains all states that may turn out to be

safe even if the probability is low. In other words, S \ X+
t

contains states that are unsafe with high probability.

Confidence interval. The correctness of X+
t and X−t de-

pends on the accuracy of the confidence interval inferred by
the GP. The conservativeness can be tuned by using the pa-
rameter β, and the choice of this parameter was well-studied
in Srinivas et al. (2010) and Chowdhury & Gopalan (2017).



Safe Reinforcement Learning in Constrained Markov Decision Processes

In the rest of this paper, we set the parameter to

βt = Bg + σg

√
2(Γgt−1 + 1 + log(1/∆g)),

where Bg is a bound on the RKHS norm of g, ∆g is the
allowed failure probability, and the observation noise is σg-
sub-Gaussian. Also, Γg quantifies the effective degrees of
freedom associated with the kernel function, which repre-
sents the maximal mutual information that can be obtained
about the GP prior.

Under the above definitions and assumptions, we have the
following lemma regarding the correctness of the confidence
intervals.

Lemma 1. Assume that ‖g‖2k ≤ Bg and ngt ≤ σg, ∀t ≥ 1.

If βt = Bg + σg

√
2(Γgt−1 + 1 + log(1/∆g)), then

|g(s)− µgt−1(s)| ≤ β1/2
t σgt−1(s)

holds for all t ≥ 1 with probability at least 1−∆g .

The above paradigm for the safety function can also be
applied to the reward function. Hence, we have a similar
lemma for the reward function as well.

Lemma 2. Assume that ‖r‖2k ≤ Br and nrt ≤ σr, ∀t ≥ 1.
If αt = Br + σr

√
2(Γrt−1 + 1 + log(1/∆r)), then

|r(s)− µrt−1(s)| ≤ α1/2
t σrt−1(s)

holds for all t ≥ 1 with probability at least 1−∆r.

These lemmas follow from Theorem 2 in Chowdhury &
Gopalan (2017).

Optimal solution. Here, we define the optimal policy in
our problem setting. Under the optimal policy, π∗, the value
function, VM, satisfies the following Bellman equation:

V ∗M(st) = max
st+1∈R̄εg (S0)

[ r(st+1) + γV ∗M(st+1) ] ,

where R̄εg (S0) is the largest set that can be safely learned
up to εg accuracy (for a formal definition, see Appendix A or
Turchetta et al. (2016)). In our problem setting, in which the
reward and safety functions are unknown a priori, the above
Bellman equation cannot be solved directly. Our ultimate
objective is to obtain a policy whose value is close to V∗M
while guaranteeing satisfaction of the safety constraint.

4. Algorithm
We now introduce our proposed algorithm, SNO-MDP, for
achieving a near-optimal policy with respect to the cumula-
tive reward while guaranteeing safety.

Algorithm 1 SNO-MDP with ES2

Input: states S, actions A, transition function f , kernel kr for
reward, kernel kg for safety, GP prior for reward, GP prior for
safety, safety threshold h, discount factor γ, Lipschitz constant L,
initial safe space S0.
1: C0(s)← [h,∞) for all s ∈ S0

2: // Exploration of safety
3: loop
4: S−t ← {s ∈ S | ∃s′ ∈ X−t−1 : lt(s

′)− L · d(s, s′) ≥ h}
5: S+

t ← {s ∈ S | ∃s′ ∈ X+
t−1 : ut(s

′)−L · d(s, s′) ≥ h}
6: X−t ← {s ∈ S−t | s ∈ Rreach(X−t−1) ∩ R̄ret(S

−
t ,X−t−1)}

7: X+
t ← {s ∈ S+

t | s ∈ Rreach(X+
t−1) ∩ R̄ret(S

+
t ,X+

t−1)}
8: Gt ← {s ∈ X−t | et(s) > 0}
9: ξ ← arg maxs∈Gt wt(s)

10: Update GPs for both reward and safety on way to ξ
11: t← t+ Tst−1→ξ and st ← ξ

12: // ES2 algorithm
13: Yt ← {s′ ∈ S+ | ∀s ∈ X−t : s′ = f(s, π∗y(a | s))}
14: if Yt ⊆ X−t then break
15: // Typical termination condition
16: if maxs∈Gt wt(s) < εg then break
17: end loop
18: // Exploration and exploitation of reward
19: loop
20: Ut ← µrt + αt+1 · σrt
21: J∗Y(st)← maxst+1∈Yt

[
Ut(st+1) + γJ∗Y(st+1)

]
22: st+1 ← arg maxst+1∈Yt J

∗
Y(st)

23: end loop

We first give an overview of SNO-MDP, which is outlined
as Algorithm 1. We extend a stepwise approach in Sui et al.
(2018) from state-less to stateful settings. Basically, our al-
gorithm consists of two steps. In the first step, the agent ex-
pands the pessimistic safe region while guaranteeing safety
(lines 2−17). Next, it explores and exploits the reward in
the safe region certified in the first step (lines 18−23). The
reason for this stepwise approach is that we can neglect
uncertainty related to the a priori unknown safety function
once the safe region is fixed.

However, a pure stepwise approach does not stop exploring
the safe region until the convergence of the GP confidence
interval (lines 15−16). This formulation often requires
the agent to execute a great number of actions for explor-
ing safety. Hence, to achieve near-optimality while exe-
cuting a smaller number of actions, we also propose the
ES2 algorithm.2 This algorithm checks whether the current
safe region is sufficient for achieving near-optimality (lines
12−14), which maintains the theoretical guarantee with re-
spect to both the satisfaction of the safety constraint and
the near-optimality of the cumulative reward. We further
propose a practical ES2 algorithm, called P-ES2, with bet-
ter empirical performance, although it does not provide a
theoretical guarantee in terms of the near-optimality of the
cumulative reward.

2Both ES2 and P-ES2 do not affect the agent’s safety.
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4.1. Exploration of Safety (Step 1)

First, we consider how to explore the safety function. As a
scheme to expand the safe region, we consider “expanders”
as in Sui et al. (2015) and Turchetta et al. (2016). Expanders
are states that may expand the predicted safe region, which
is defined as Gt = {s ∈ X−t | et(s) > 0}, where et(s) =
|s′ ∈ S \ S−t | ut(s)− Ld(s, s′) ≥ h|.

The efficiency of expanding the safe region is measured
by the width of the safety function’s confidence interval,
defined as

wt(s) = ut(s)− lt(s).

The agent safely and efficiently expands the safe region by
sampling the state with the maximum value of w among
the expanders, Gt. Hence, the agent sets the temporal goal
according to

ξ = arg max
s∈Gt

wt(s).

Then, within the predicted safe space X−t , it chooses a path
to get to ξ from the current state st−1 so as to minimize the
cost (e.g., the path length). In our experiment, we simply
minimized the path length. By defining the cost as related
to w (e.g., 1/w), however, the agent could explore safety
more actively on the way to ξ.

The previous work (Sui et al., 2015; Turchetta et al., 2016;
Sui et al., 2018) terminated safety exploration when the
desired accuracy was achieved for every state in Gt; that is,

max
s∈Gt

wt(s) ≤ εg. (1)

Unfortunately, this termination condition often requires a
great number of iterations. For the purpose of maximizing
the cumulative reward, it often leads to the loss of reward.
Therefore, in Section 4.3, we propose the ES2 algorithm to
improve this point.

4.2. Exploration and Exploitation of Reward (Step 2)

Once expansion of the safe region is completed, the agent
guarantees safety as long as it is in X− and does not have to
expand the safe region anymore. Hence, all we have to do
is optimize the cumulative reward in X−. As such, a simple
approach is to follow the optimism in the face of uncertainty
principle as in Strehl & Littman (2008) and Auer & Ortner
(2007), then to consider the “exploration bonus” represented
by R-MAX (Brafman & Tennenholtz, 2002) and Bayesian
Exploration Bonus (BEB, Kolter & Ng (2009)).

Specifically, in accordance with Lemma 2, we optimize
the policy by optimistically measuring the reward with the
(probabilistic) upper confidence bound,

Ut(s) := µrt (s) + α
1/2
t+1 · σrt (s).

Optimistic 
safe space

Pessimistic
safe space

Unsafe space

Figure 1. Illustration of My , used in the ES2 algorithm. The
yellow and blue regions represent X+

t and X−t , respectively. The
red region (i.e., X \ X+

t ) is unsafe with high probability.

In this reward setting, the second term on the right-hand
side corresponds to the exploration bonus. For balancing the
exploration and exploitation in terms of reward, we solve
the following Bellman equation:

J∗X (st, b
r
t , b

g
t ) = max

st+1∈X−
t∗

[
Ut(st+1) + γJ∗X (st+1, b

r
t , b

g
t )
]
,

where br = (µr, σr) and bg = (µg, σg) are the beliefs over
reward and safety, respectively. Also, t∗ is the time step
when the termination condition (1) is satisfied. Note that
br and bg are not updated; hence, we can solve the above
equation with standard algorithms (e.g., value iteration).

4.3. Early Stopping of Exploration of Safety (ES2)

We have proposed a stepwise approach for exploring and
optimizing the constrained MDP. In the first step when the
safe region is expanded, however, the existing safe explo-
ration algorithms (Sui et al., 2015; Turchetta et al., 2016;
Sui et al., 2018) continue exploring the state space until
convergence of the confidence interval, w, which generally
leads to a large number of iterations. Our primary objective
is to maximize the cumulative reward; hence, we should
stop exploring safety if further exploration will not lead to
maximizing the cumulative reward.

While exploring the safety function, we check whether the
step can be migrated. As such, we consider the following
additional MDP,

My = 〈X+,A, f, r′, g, γ〉.

As shown in Figure 1, the differences from the original MDP,
M, lie in the state space and the reward function. The state
space of My is defined as the optimistic safe space (i.e.,
X+), while the reward function is defined as follows:

r′ :=

{
µr + α1/2σr if s ∈ X+

t \ X−t ,
µr − α1/2σr if s ∈ X−t .

(2)

In the pessimistic safe space, the reward is defined as the
lower bound; otherwise, it is defined as the upper bound.
This definition of the reward function encourages the agent
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to explore outside the predicted safe space, X−t . Using the
new MDP above, we consider the set of states that the agent
will visit at the next time step, defined as

Yt = {s′ ∈ S+ | ∀s ∈ X−t : s′ = f(s, π∗y(a | s))},

where π∗y is the optimal policy forMy, obtained by maxi-
mizing the following value function:

VMy
(st) = max

st+1∈X+
t

[ r′(st+1) + γVMy
(st+1) ]. (3)

Finally, we stop exploring the safety function if the follow-
ing equation holds:

Yt ⊆ X−t . (4)

Intuitively, we stop expanding the safe space if the direction
of the optimal policy forMy heads for the inside of X−t .
If the agent tries to stay in X−t even under the condition
that the reward is defined as in (2), then we do not have to
expand the safe region anymore.

When the ES2 algorithm confirms satisfaction of the above
condition, we move on to the next step and then optimize
the cumulative reward in Yt; that is,

J∗Y(st, b
r
t , b

g
t ) = max

st+1∈Yt

[
Ut(st+1) + γJ∗Y(st+1, b

r
t , b

g
t )
]
.

4.4. More Practical ES2 Algorithm (P-ES2)

As we will prove in Section 5, the ES2 algorithm provides us
with a theoretical guarantee with respect to the cumulative
reward. Unfortunately, this guarantee is achieved at the
expense of empirical performance. The issue with the pure
ES2 algorithm lies in the state constraint in (3); that is, the
value function is calculated under the assumption that all
the states in the optimistic safe space, X+, will be identified
as safe. This assumption is necessary for the theoretical
guarantee, but, in practice, it would be more reasonable
to measure the probability of a state being identified as
safe. Because the safety function is inferred as a Gaussian
distribution for each state, an example of such a probability
is a complementary error function; that is, we define the
following probability,

p(s, bg) = Pr [g(s) ≥ h | bg] ≈ 1− 1

2
erfc

(
µg(s)− h√

2σg(s)

)
.

Here, we introduce a new virtual state, z. Concretely, for z,
the reward and transition probability are defined as r(z) = 0
and P (z | z, a, bg) = 1 for all a and bg, respectively.
Hence, using z, we define a virtual transition probability
P zx = Pr[x | st, at, bgt ] as follows:

P zx :=

{
p(st+1, b

g
t ) if x = st+1,

1− p(st+1, b
g
t ) if x = z.

𝑠" 𝑠# 𝑠$
𝑝(𝑠#,𝑏))

𝑧 1.0

𝑝(𝑠$,𝑏))

1 − 𝑝(𝑠#,𝑏))

State space

1 − 𝑝(𝑠$,𝑏))

Figure 2. Illustration ofMz . This MDP is characterized by the
virtual state z and the virtual transition probability P z .

Hence, by introducing z and P z , we define the following
MDP with the smooth, continuous transition probability:

Mz = 〈X+ ∪ {z},A, P z, r′, g, γ〉.

Figure 2 shows a conceptual image of this MDP. Intuitively,
in Mz , the agent optimizes the policy under the virtual
condition that a state-action pair may lead to the extremely
undesirable state, z, with probability 1− p. Then, we solve
the following equation instead of solving (3):

VMz
(st) = max

st+1∈X+
t

[P zst+1
· {r′(st+1) + γVMz

(st+1)}].

For this equation, we used r(z) = 0 and V (z) = 0. For
the optimal policy π∗z obtained by solving the above equa-
tion, we stop exploring the safety function if the following
equation holds:

Zt := {s′ ∈ S+ | ∀s ∈ X−t : s′ = f(s, π∗z(a |s))} ⊆ X−t .

Then, we optimize the cumulative reward in Zt by solving
the following equation:

J∗Z(st, b
r
t , b

g
t ) = max

st+1∈Zt

[
Ut(st+1) + γJ∗Z(st+1, b

r
t , b

g
t )
]
.

5. Theoretical Results
We now provide theoretical guarantees on the safety and
near-optimality of our proposed algorithm. Theorem 1 is
associated with the safe expansion stage (i.e., step 1), which
guarantees safety and convergence to the safe region. The-
orem 2 ensures convergence toward the near-optimal cu-
mulative reward. Theorem 3 ensures that SNO-MDP still
achieves the near-optimal cumulative reward even when
the ES2 algorithm is used. In the rest of this paper, let
Vmax = Rmax/(1−γ). Also, letD :M→ R be a diameter
of an MDP, defined as D(M) = minπ maxs1 6=s2 T

π
s1→s2 ,

where Tπs1→s2 is the expected number of time steps that
policy π takes to move from s1 to s2.

5.1. Safety Guarantee and Completeness

We first present a theorem related to the safety guarantee
and completeness.
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Theorem 1. Assume that the safety function g satisfies
‖g‖2k ≤ Bg and is L-Lipschitz continuous. Also, as-
sume that S0 6= ∅ and g(s) ≥ h for all s ∈ S0.
Fix any εg > 0 and ∆g ∈ (0, 1). Suppose that we
conduct the stage of “exploration of safety” with the
noise ngt being σg-sub-Gaussian, and that βt = Bg +

σg

√
2(Γgt−1 + 1 + log(1/∆g)) until maxs∈Gt wt(s) < εg

is achieved. Finally, let t∗ be the smallest integer satisfying

t∗

βt∗Γgt∗
≥ Cg|R̄0(S0)|

ε2g
D(M),

with Cg = 8/ log(1 + σ−2
g ). Then, the following statements

jointly hold with probability at least 1−∆g:

• ∀t ≥ 1, g(st) ≥ h,

• ∃t0 ≤ t∗, R̄εg (S0) ⊆ X−t0 ⊆ R̄0(S0).

A proof is presented in the supplemental material. Theo-
rem 1 guarantees that SNO-MDP is safe in the stage of
exploration of safety (i.e., step 1), as well as in the stage of
optimization of reward (i.e., step 2), with high probability.
In addition, after a sufficiently large number of time steps,
X− is guaranteed to be a super-set of R̄εg (S0).

5.2. Near-Optimality

We next present a theorem on the near-optimality with re-
spect to the cumulative reward.

Theorem 2. Assume that the reward function r satisfies
‖r‖2k ≤ Br, and that the noise is σr-sub-Gaussian. Let
πt denote the policy followed by SNO-MDP at time t,
and let st and brt , b

g
t be the corresponding state and be-

liefs, respectively. Let t∗ be the smallest integer satisfying
t∗

βt∗Γg
t∗
≥ Cg|R̄0(S0)|

ε2g
D(M), and fix any ∆r ∈ (0, 1). Fi-

nally, set αt = Br + σr
√

2(Γrt−1 + 1 + log(1/∆r)) and

ε∗V = Vmax · (∆g + Σrt∗/Rmax),

with Σrt∗ = 1
2

√
Crαt∗Γr

t∗
t∗ . Then, with high probability,

V πt(st, b
r
t , b

g
t ) ≥ V ∗(st)− ε∗V

— i.e., the algorithm is ε∗V -close to the optimal policy —
for all but t∗ time steps, while guaranteeing safety with
probability at least 1−∆g .

A detailed proof of Theorem 2 is presented in the supple-
mental material. The proof is based on the following idea.
After the agent fully explores the safe space, X− satisfies
R̄εg (S0) ≤ X− ≤ R̄0(S0), and states in X− are safe with
high probability. Once X− converges, the probability of
leaving the “known” safe space is small; hence, Theorem 2

follows by adapting standard arguments from previous PAC-
MDP results. The key condition that allows us to prove the
near-optimality of SNO-MDP is that, at every time step,
the agent is optimistic with respect to the reward, and this
optimism decays given a sufficient number of samples. By
optimizing the cumulative reward in X− according to the
optimism in the face of uncertainty principle, the acquired
policy is ε∗V -close to the optimal policy in the original safety-
constrained MDP.

Finally, we present a theoretical result related to the ES2

algorithm. Specifically, we prove that ES2 maintains the
near-optimality of SNO-MDP.

Theorem 3. Assume that the reward function r satisfies
‖r‖2k ≤ Br, and that the noise is σr-sub-Gaussian. Let πt
denote the policy followed by SNO-MDP with the ES2 algo-
rithm at time t, and let st and brt , b

g
t be the corresponding

state and beliefs, respectively. Let t̃ be the smallest integer
for which (4) holds, and fix any ∆r ∈ (0, 1). Finally, set
αt = Br + σr

√
2(Γrt−1 + 1 + log(1/∆r)) and

ε̃V = Vmax · (∆g + Σrt̃/Rmax),

with Σr
t̃

= 1
2

√
Crαt̃Γ

r
t̃

t̃
. Then, with high probability,

V πt(st, b
r
t , b

g
t ) ≥ V ∗(st)− ε̃V

— i.e., the algorithm is ε̃V -close to the optimal policy — for
all but t̃ time steps while guaranteeing safety with probabil-
ity at least 1−∆g .

The proof of Theorem 3 is presented in the supplemental
material. The proof is based on the following idea. When
the condition in (4) is satisfied, the agent will not leave Y ,
and a near-optimal policy is obtained by optimizing the cu-
mulative reward only in Y with the optimistically measured
reward. Also, as long as the agent is in Y (⊆ X−), safety
is guaranteed with high probability. The proof is similar to
that for Theorem 2.

6. Experiment
In this section, we evaluate the performance of SNO-MDP
through two experiments. One used a synthetic environment,
while the other simulated Mars surface exploration. We also
show the effectiveness of our ES2 and P-ES2 algorithms.

6.1. Synthetic GP-SAFETY-GYM Environment

Settings. We constructed a new open-source environment
for safe RL simulations named GP-SAFETY-GYM. This envi-
ronment was built based on OpenAI Safety-Gym (Ray et al.,
2019). As shown in Figure 3(a), GP-SAFETY-GYM repre-
sents the reward by a color (yellow: high; green: medium;
blue: low), and the safety by height.
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(a) GP-SAFETY-GYM. (b) Performance comparison. (c) Effects of ES2 and P-ES2.

Figure 3. Experiment with synthetic data. (a) Example screen capture from the GP-SAFETY-GYM environment. (b) Average reward over
the episodes, comparing the performance of SNO-MDP with ES2 and the baselines. (c) Average reward over the episodes, showing the
effects of ES2 and P-ES2. The colored circles represent when the transition from safe exploration to reward optimization happens for
each method. In both (b) and (c), the reward is normalized with respect to the SAFE/REWARD KNOWN case.

We considered a 20 × 20 square grid in which the reward
and safety functions were randomly generated. At every
time step, an agent chose an action from stay, up, right,
down, and left. The agent predicted the reward and safety
functions by using different kernels on the basis of previous
observations. In this simulation, we allowed the agent to
observe the reward and safety function values of the current
state and neighboring states. The kernel for reward was a
radial basis function (RBF) with the length-scales of 2 and
prior variance of 1. The kernel for safety was also an RBF
with the length-scales of 2 and prior variance of 1. Finally,
we set the discount factor to γ = 0.99, and confidence
intervals parameters to αt = 3 and βt = 2 for all t ≥ 1.

Baselines. We empirically compared the performance of
our SNO-MDP with SAFEMDP (Turchetta et al., 2016)
and SAFEEXPOPT-MDP (Wachi et al., 2018), as well as
a case called SAFE/REWARD KNOWN. In SAFEMDP, the
agent tries to expand the safe region without considering
the reward. In SAFEEXPOPT-MDP, the agent attempts
to maximize the cumulative reward while leveraging the
difference between the value function in X+

t and that in
X−t . Finally, SAFE/REWARD KNOWN is a non-exploratory
case in which the safety and reward functions are known a
priori.

Metrics. We used the cumulative reward and the number
of unsafe actions as comparison metrics.

Results. Figure 3(b) compares the performance of SNO-
MDP and the baselines in terms of the reward. For these
results, the average reward was measured over the previous
50 time steps. SNO-MDP achieved the optimal reward after
shifting to the stage of reward optimization, which outper-
forms SAFEMDP and SAFEEXPOPT-MDP in terms of the
reward after a sufficiently large number of time steps. The
SAFEMDP agent did not aim to maximize the cumulative
reward, and the SAFEEXPOPT-MDP agent was sometimes

stucked in a local optimum when the expansion of the safe
region was insufficient. Figure 3(c) shows the empirical
performance of the ES2 and P-ES2 algorithms. P-ES2

achieved faster convergence in terms of the reward than the
original ES2 did. Also, all methods, including the baselines,
did not take any unsafe actions.

6.2. Simulated Mars Surface Exploration

Settings. We then conducted an experiment based on a
Mars surface exploration scenario, as in Turchetta et al.
(2016) and Wachi et al. (2018). In this simulation, we used
a publicly available Mars digital elevation model (DEM)
that was created from observation data captured by the high-
resolution imaging science experiment (HiRISE) camera
(McEwen et al., 2007).
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Figure 4. Mars terrain data.

We created a 40 × 30
rectangular grid-world by
clipping a region around
latitude 30◦6’ south and
longitude 202◦2’ east, as
shown in Figure 4. At ev-
ery time step, the rover
took one of five actions:
stay, up, down, left, and
right. We assumed that
any state in which the
slope angle was greater than 25◦ were unsafe. The safety
function g was defined as the slope angle calculated from
the DEM, and the safety threshold was h = − tan(25◦).

The rover predicted the elevation by using a GP with a
Matérn kernel with ν = 5/2. The length-scales were 15 m,
and the prior variance over elevation was 100 m2. We as-
sumed a noise standard deviation of 0.075 m. For the re-
ward, we randomly defined a smooth, continuous reward.
To predict the reward function, the rover used a GP with
RBF kernel having length-scales of 2 and a prior variance
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Table 1. Experimental results with real Mars data.

REWARD UNSAFE ACTIONS

SNO-MDP W/ P-ES2 0.81 0
SNO-MDP W/ ES2 0.78 0
SNO-MDP 0.49 0
SAFEMDP 0.34 0
SAFEEXPOPT-MDP 0.59 0
SAFE/REWARD KNOWN 1.00 0

over the reward of 2. We set the confidence levels as αt = 3
and βt = 2,∀t ≥ 0, and the discount factor as γ = 0.9.

Baselines and metrics. We used the same baselines and
metrics as in the previous synthetic experiment.

Results. Table 1 summarizes the results. The reward was
accumulated over the episode, which was normalized with
respect to the SAFE/REWARD KNOWN case. Our SNO-
MDP with either P-ES2 or ES2 outperformed SAFEMDP
and SAFEEXPOPT-MDP in terms of the reward. This was
expected, because SafeMDP does not aim to maximize the
cumulative reward, and SAFEEXPOPT-MDP does not guar-
antee the near-optimality of the cumulative reward. Also, no
unsafe action was executed by any of the tested algorithms.

7. Conclusion
We have proposed SNO-MDP, a stepwise approach for
exploring and optimizing a safety-constrained MDP. The-
oretically, we proved a bound of the sample complexity to
achieve εV -closeness to the optimal policy while guarantee-
ing safety, with high probability. We also proposed the ES2

and P-ES2 algorithms for improving the efficiency in ob-
taining rewards. We developed an open-source environment,
GP-SAFETY-GYM, to test the effectiveness of SNO-MDP .
We also demonstrated the advantages of SNO-MDP using
the real Mars terrain data.
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Appendices

A. Definitions
We repeat the relevant definitions in our paper.

A1. Safe Space: For more details, see Turchetta et al. (2016).

Set of the states identified as safe up to some confidence level of εg:

Rsafe
εg (X) = X ∪ {s ∈ S | ∃s′ ∈ X : g(s′)− εg − Ld(s, s′) ≥ h}.

Set of states with reachability from X:

Rreach(X) = X ∪ {s ∈ S | ∃s′ ∈ X, a ∈ A(s′) : s = f(s′, a)}.

Set of states with returnability to X:

Rret(X, X̄) = X̄ ∪ {s ∈ X | ∃a ∈ A : f(s, a) ∈ X̄},
Rnret(X, X̄) = Rret(X,R

n−1
ret (X, X̄)),with R1

ret(X, X̄) = Rret(X, X̄),

R̄ret(X, X̄) = lim
n→∞

Rnret(X, X̄).

Set of safe states with reachability and returnability:

Rεg (X) = Rsafe
εg (X) ∩Rreach(X) ∩Rret(R

safe
εg (X), X),

Rεg (X) = Rεg (Rn−1
εg (X)),with R1

εg (X) = Rεg (X),

R̄εg (X) = lim
n→∞

Rnεg (X).

Pessimistic safe space:

S−t = {s ∈ S | ∃s′ ∈ X−t−1 : lt(s
′)− L · d(s, s′) ≥ h},

X−t = {s ∈ S−t | s ∈ Rreach(X−t−1) ∩ R̄ret(S
−
t ,X−t−1)}.

Optimistic safe space:

S+
t = {s ∈ S | ∃s′ ∈ X+

t−1 : ut(s
′)− L · d(s, s′) ≥ h},

X+
t = {s ∈ S+

t | s ∈ Rreach(X+
t−1) ∩ R̄ret(S

+
t ,X+

t−1)}.

A2. Optimization of Cumulative Reward

For optimal policy:

V ∗M(st) = max
st+1∈Rεg (S0)

[ r(st+1) + γV ∗M(st+1) ] .

For balancing exploration and exploitation (neither ES2 nor P-ES2 is used):

Ut(s) = µrt (s) + α
1/2
t+1 · σrt (s),

J∗X (st, b
r
t , b

g
t ) = max

st+1∈X−
t∗

[
Ut(st+1) + γJ∗X (st+1, b

r
t , b

g
t )
]
.
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A3. ES2 Algorithm

For checking whether the termination condition is satisfied:

VMy (st) = max
st+1∈X+

t

[ r′(st+1) + γVMy (st+1) ],

Yt = {s′ ∈ S+ | ∀s ∈ X−t : s′ = f(s, π∗y(a | s))},
Yt ⊆ X−t .

For balancing exploration and exploitation in terms of reward:

J∗Y(st, b
r
t , b

g
t ) = max

st+1∈Yt

[
Ut(st+1) + γJ∗Y(st+1, b

r
t , b

g
t )
]
.

A4. P-ES2 Algorithm

For checking whether the termination condition is satisfied:

VMz
(st) = max

st+1∈X+
t

[ P z · {r′(st+1) + γVMz
(st+1)} ],

Zt = {s′ ∈ S+ | ∀s ∈ X−t : s′ = f(s, π∗z(a | s))},
Zt ⊆ X−t .

For balancing exploration and exploitation in terms of the reward:

J∗Z(st, b
r
t , b

g
t ) = max

st+1∈Zt

[
Ut(st+1) + γJ∗Z(st+1, b

r
t , b

g
t )
]
.

B. Preliminary Lemma
Lemma 3. For two arbitrary functions f1(x) and f2(x), the following inequality holds:

max
x

f1(x)−max
x

f2(x) ≥ min
x

(f1(x)− f2(x)).

Proof. For two arbitrary functions f4(x) and f5(x), the following inequality holds:

max
x

f4(x) + max
x

f5(x) ≥ max
x
{f4(x) + f5(x)}.

Let f2(x) = f4(x) + f5(x) and f3(x) = −f4(x). Then,

max
x
{−f3(x)}+ max

x
{f2(x) + f3(x)} ≥ max

x
f2(x),

max
x
{f2(x) + f3(x)} −max

x
f2(x) ≥ −max

x
{−f3(x)},

max
x
{f2(x) + f3(x)} −max

x
f2(x) = min

x
f3(x).

Finally, let f1(x) = f2(x) + f3(x). Then, the desired lemma is obtained.

C. Near-optimality
Lemma 4. Let J∗X (st, b

r
t , b

g
t ) be the value function calculated by SNO-MDP without the ES2 algorithm. Then,

J∗X (st, b
r
t , b

g
t ) satisfies the following inequality:

J∗X (st, b
r
t , b

g
t ) ≥ V ∗(st).

Proof. Consider a state st and beliefs brt and bgt . Also, let I denote the following safety indicator function:

I(s) :=

{
1 if s ∈ R̄εg (S0),
0 otherwise. (5)
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Then, the following chain of equations and inequalities holds:

J∗X (st, b
r
t , b

g
t )− V ∗(st)

= max
st+1∈X−

t∗

[ Ut(st+1) + γJ∗X (st+1, b
r
t , b

g
t ) ]− max

st+1∈R̄εg (S0)
[ r(st+1) + γV ∗M(st+1) ]

≥ max
st+1∈R̄εg (S0)

[ Ut(st+1) + γJ∗X (st+1, b
r
t , b

g
t ) ]− max

st+1∈R̄εg (S0)
[ r(st+1) + γV ∗M(st+1) ]

= max
at

[ I(st+1) · {Ut(st+1) + γJ∗X (st+1, b
r
t , b

g
t )} ]−max

at
[ I(st+1) · {r(st+1) + γV ∗M(st+1)} ]

≥ min
at

[ I(st+1) · {Ut(st+1)− r(st+1)}+ γI(st+1)J∗X (st+1, b
r
t , b

g
t )− γI(st+1)V ∗(st+1) ]

= min
at

[ I(st+1) · {Ut(st+1)− r(st+1)}+ γI(st+1){J∗X (st+1, b
r
t , b

g
t )− V ∗(st+1)} ] .

The third line follows from X−t∗ ⊇ R̄εg (S0) in Theorem 1. Also, the fourth line follows from the definition of I , and the
fifth line follows from Lemma 3. Because s is arbitrary in the above derivation, we have

min
st

[ J∗X (st, b
r
t , b

g
t )− V ∗(st) ] ≥ min

st+1

[ I(st+1){Ut(st+1)− r(st+1)}+ γI(st+1){J∗(st+1, b
r
t , b

g
t )− V ∗(st+1)} ] .

By Lemma 2, the following equation holds with probability at least 1−∆r:

min
st

[ J∗X (st, b
r
t , b

g
t )− V ∗(st, brt , b

g
t ) ] ≥ γ ·min

st+1

[I(st+1){J∗X (st+1, b
r
t , b

g
t )− V ∗(st+1)} ]

Repeatedly applying this equation proves the desired lemma. Therefore, we have

J∗X (st, b
r
t , b

g
t ) ≥ V ∗(st)

with high probability.

Lemma 5. (Generalized induced inequality) Let br, bg, r and b̂r, b̂g, r̂ be the beliefs (over reward and safety, respectively)
and reward functions (including the exploration bonus) that are identical on some set of states Ω — i.e., br = b̂r, bg = b̂g ,
and r = r̂ for all s ∈ Ω. Let P (AΩ) be the probability that a state not in Ω is generated when starting from state s and
following a policy π. If the value is bound in [0, Vmax], then

V π(s, br, bg, r) ≥ V π(s, b̂r, b̂g, r̂)− VmaxP (AΩ),

where we now make explicit the dependence of the value function on the reward.

Proof. The lemma follows from Lemma 8 in Strehl & Littman (2005).

Lemma 6. Assume that the reward function r satisfies ‖r‖2k ≤ Br, and that the noise nrt is σr-sub-Gaussian. If αt =
Br + σr

√
2(Γrt−1 + 1 + log(1/∆r)) and Cr = 8/ log(1 + σ−2

r ), then the following holds:

1

2

√
Crαt∗Γrt∗

t∗
≥ α1/2

t∗ σrt∗(s),

with probability at least 1−∆r.

Proof. The lemma follows from Lemma 4 in Chowdhury & Gopalan (2017).

D. ES2 algorithm
Lemma 7. Assume that Yt ⊆ X−t holds. Suppose that we obtain the optimal policy, π∗y on the basis of J∗Y(st, b

r
t , b

g
t ) =

maxst+1∈Yt
[
Ut(st+1) + γJ∗Y(st+1, b

r
t , b

g
t )
]
. Then, for all t, the following holds:

st ∈ Yt =⇒ st+1 ∈ Yt.
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Proof. When Yt ⊆ X−t holds, we have

{s′ ∈ S+ | ∀s ∈ Yt : s′ = f(s, π∗y(a | s))} ⊆ {s′ ∈ S+ | ∀s ∈ X−t : s′ = f(s, π∗y(a | s))}
= Yt.

This means that the next state st+1 will be within Yt if the agent is in Yt and decides the action based on π∗y . Therefore, we
have the desired lemma.

Lemma 8. Assume that Yt ⊆ X−t holds, and let J∗Y(st, b
r
t , b

g
t ) be the value function calculated by SNO-MDP with the

ES2 algorithm. Then, for all st ∈ X−t , J∗Y(st, b
r
t , b

g
t ) satisfies the following equation:

J∗Y(st, b
r
t , b

g
t ) ≥ V ∗(st).

Proof. Consider a state st ∈ X−t and beliefs br and bg . Also, we define the function I as in (5). Then, the following chain
of the equations and inequalities holds:

J∗Y(st, b
r
t , b

g
t )− V ∗(st)

= max
st+1∈Yt

[
Ut(st+1) + γJ∗Y(st+1, b

r
t , b

g
t )
]
−max

at
[ I(st+1) · {r(st+1) + γV ∗M(st+1)} ]

= max
st+1∈Yt

[
Ut(st+1) + γJ∗Y(st+1, b

r
t , b

g
t )
]
− max
st+1∈X+

t

[ I(st+1) · {r(st+1) + γV ∗M(st+1)} ]

= max
st+1∈Yt

[
Ut(st+1) + γJ∗Y(st+1, b

r
t , b

g
t )
]
− max
st+1∈Yt

[ I(st+1) · {r(st+1) + γV ∗M(st+1)} ]

≥ min
st+1∈Yt

[
Ut(st+1) + γJ∗Y(st+1, b

r
t , b

g
t )− I(st+1) · {r(st+1) + γV ∗M(st+1)}

]
≥ min

st+1∈Yt

[
Ut(st+1) + γJ∗Y(st+1, b

r
t , b

g
t )− {r(st+1) + γV ∗M(st+1)}

]
= min

st+1∈Yt

[
Ut(st+1)− r(st+1) + γJ∗Y(st+1, b

r
t , b

g
t )− γV ∗M(st+1)

]
.

The second and third lines follow from the definitions of I and V ∗M. The forth line follows from the definition of Y and the
assumption of Yt ⊆ X−t . The fifth line follows from Lemma 3.

Then, by Lemma 2, the following equation holds with probability at least 1−∆r:

min
st∈X−

t

[
J∗Y(st, b

r
t , b

g
t )− V ∗(st)}

]
≥ γ · min

st+1∈Yt

[
J∗Y(st+1, b

r
t , b

g
t )− V ∗M(st+1)

]
≥ γ2 · min

st+2∈Yt

[
J∗Y(st+2, b

r
t , b

g
t )− V ∗M(st+2)

]
.

The second line follows from Lemma 7. Repeatedly applying this equation proves the desired lemma. Therefore, for all
st ∈ X−t , we have

J∗Y(st, b
r
t , b

g
t ) ≥ V ∗(st).

E. Main Theoretical Results
Theorem 1. Assume that the safety function g satisfies ‖g‖2k ≤ Bg and is L-Lipschitz continuous. Also, assume that S0 6= ∅
and g(s) ≥ h for all s ∈ S0. Fix any εg > 0 and ∆g ∈ (0, 1). Suppose that we conduct the stage of “exploration of safety”

with the noise ngt being σg-sub-Gaussian, and that βt = Bg + σg

√
2(Γgt−1 + 1 + log(1/∆g)) until maxs∈Gt wt(s) < εg

is achieved. Finally, let t∗ be the smallest integer satisfying

t∗

βt∗Γgt∗
≥ Cg|R̄0(S0)|

ε2g
·D(M),

with Cg = 8/ log(1 + σ−2
g ). Then, the following statements jointly hold with probability at least 1−∆g:
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• ∀t ≥ 1, g(st) ≥ h,

• ∃t0 ≤ t∗, R̄εg (S0) ⊆ X−t0 ⊆ R̄0(S0).

Proof. This is an extension of Theorem 1 in Turchetta et al. (2016) to our settings, where t represents not the number of
samples but the number of actions.

Theorem 2. Assume that the reward function r satisfies ‖r‖2k ≤ Br, and that the noise is σr-sub-Gaussian. Let πt denote
the policy followed by SNO-MDP at time t, and let st and brt , b

g
t be the corresponding state and beliefs, respectively.

Let t∗ be the smallest integer satisfying t∗

βt∗Γg
t∗
≥ Cg|R̄0(S0)|

ε2g
D(M), and fix any ∆r ∈ (0, 1). Finally, set αt = Br +

σr
√

2(Γrt−1 + 1 + log(1/∆r)) and
ε∗V = Vmax · (∆g + Σrt∗/Rmax),

with Σrt∗ = 1
2

√
Crαt∗Γr

t∗
t∗ . Then, with high probability,

V πt(st, b
r
t , b

g
t ) ≥ V ∗(st)− ε∗V

— i.e., the algorithm is ε∗V -close to the optimal policy — for all but t∗ time steps, while guaranteeing safety with probability
at least 1−∆g .

Proof. Define r̃ as the reward function (including the exploration bonus) that is used by SNO-MDP. Let r̂ be a reward
function equal to r on Ω and equal to r̃ elsewhere. Furthermore, let π̃ be the policy followed by SNO-MDP at time t, that is,
the policy calculated on the basis of the current beliefs, (i.e., brt and bgt ) and the reward r̃. Finally, let AΩ be the event in
which π̃ escapes from Ω. Then,

V πt(r, st, b
r
t , b

g
t ) ≥ V π̃(r̂, st, b

r
t , b

g
t )− VmaxP (AΩ)

by Lemma 5. In addition, note that, for all t ≥ t∗, because r̂ and r̃ differ by at most α1/2
t∗ σrt∗ at each state,

|V π̃(r̂, st, b
r
t , b

g
t )− V π̃(r̃, st, b

r
t , b

g
t )| ≤

1

1− γ
· α1/2

t∗ σrt∗(s)

≤ Vmax/Rmax · Σrt∗ . (6)

For the above inequality, we used Lemma 6. Here, consider the case of Ω = X−t∗ . Once the safe region is fully explored,
P (AΩ) ≤ ∆g holds after t∗ time steps. Then, the following chain of equations and inequalities holds:

V πt(R, s, b) ≥ V π̃(R̂, s, b)− Vmax · P (AΩ)

= V π̃(R̂, s, b)− Vmax · P (AX−)

≥ V π̃(R̂, s, b)− Vmax ·∆g

≥ V π̃(R̃, s, b)− Vmax · (∆g + Σrt∗/Rmax)

= J∗X (R̃, s, b)− Vmax · (∆g + Σrt∗/Rmax)

≥ V ∗(R, s)− Vmax · (∆g + Σrt∗/Rmax).

In this derivation, the second line follows from the assumption of Ω = X−, the third line follows from P (AX−) ≤ ∆g , the
fourth line follows from (6), the fifth line follows from the fact that π̃ is precisely the optimal policy for R̃ and b, and the
final line follows from Lemma 4.

Theorem 3. Assume that the reward function r satisfies ‖r‖2k ≤ Br, and that the noise is σr-sub-Gaussian. Let πt
denote the policy followed by SNO-MDP with the the ES2 algorithm at time t, and let st and brt , b

g
t be the corresponding

state and beliefs, respectively. Let t̃ be the smallest integer for which (4) holds, and fix any ∆r ∈ (0, 1). Finally, set
αt = Br + σr

√
2(Γrt−1 + 1 + log(1/∆r)) and

ε̃V = Vmax · (∆g + Σrt̃/Rmax),
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with Σr
t̃

= 1
2

√
Crαt̃Γ

r
t̃

t̃
. Then, with high probability,

V πt(st, b
r
t , b

g
t ) ≥ V ∗(st)− ε̃V

— i.e., the algorithm is ε̃V -close to the optimal policy — for all but t̃ time steps while guaranteeing safety with probability at
least 1−∆g .

Proof. The proof of Theorem 3 is analogous to that of Theorem 2. Define r̃ as the reward function (including the exploration
bonus) that is used by SNO-MDP. Let r̂ be a reward function equal to r on Y and equal to r̃ elsewhere. Furthermore, let π̃
be the policy followed by SNO-MDP with the ES2 algorithm at time t, that is, the policy calculated on the basis of the
current beliefs, (i.e., brt and bgt ) and the reward r̃. Finally, let AY be the event in which π̃ escapes from Y . Then,

V πt(r, st, b
r
t , b

g
t ) ≥ V π̃(r̂, st, b

r
t , b

g
t )− VmaxP (AY)

by Lemma 5. In addition, note that, for all t ≥ t̃, because r̂ and r̃ differ by at most α1/2

t̃
σr
t̃

at each state,

|V π̃(r̂, st, b
r
t , b

g
t )− V π̃(r̃, st, b

r
t , b

g
t )| ≤

1

1− γ
· α1/2

t̃
σrt̃ (s)

≤ Vmax/Rmax · Σrt̃ . (7)

For the above inequalities, we used Lemma 6. Then, the following chain of equations and inequalities holds:

V πt(R, s, b) = V π̃(R̂, s, b)− Vmax · P (AY)

≥ V π̃(R̂, s, b)− Vmax ·∆g

≥ V π̃(R̃, s, b)− Vmax · (∆g + Σrt̃/Rmax)

= J∗Y(R̃, s, b)− Vmax · (∆g + Σrt̃/Rmax)

≥ V ∗(R, s)− Vmax · (∆g + Σrt̃/Rmax).

In this derivation, the second line follows from P (AY) ≤ ∆g, the third line follows from (7), the fourth line follows from
the fact that π̃ is precisely the optimal policy for R̃ and b, and the final line follows from Lemma 8.


