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Abstract

Safety is an indispensable requirement for applying rein-
forcement learning (RL) to real problems. Although there
has been a surge of safe RL algorithms proposed in recent
years, most existing work typically 1) relies on receiving nu-
meric safety feedback; 2) does not guarantee safety during
the learning process; 3) limits the problem to a priori known,
deterministic transition dynamics; and/or 4) assume the exis-
tence of a known safe policy for any states. Addressing the
issues mentioned above, we thus propose Long-term Binary-
feedback Safe RL (LoBiSaRL), a safe RL algorithm for con-
strained Markov decision processes (CMDPs) with binary
safety feedback and an unknown, stochastic state transition
function. LoBiSaRL optimizes a policy to maximize rewards
while guaranteeing a long-term safety that an agent executes
only safe state-action pairs throughout each episode with high
probability. Specifically, LoBiSaRL models the binary safety
function via a generalized linear model (GLM) and conser-
vatively takes only a safe action at every time step while in-
ferring its effect on future safety under proper assumptions.
Our theoretical results show that LoBiSaRL guarantees the
long-term safety constraint, with high probability. Finally, our
empirical results demonstrate that our algorithm is safer than
existing methods without significantly compromising perfor-
mance in terms of reward.

1 Introduction

Safe reinforcement learning (RL) is a promising paradigm
for applying RL algorithms to real-world applications
(Garcia and Fernandez 2015). Safe RL is beneficial
in safety-critical decision-making problems, such as au-
tonomous driving, healthcare, and robotics, where safety
requirements must be incorporated to prevent RL policies
from posing risks to humans or objects (Dulac-Arnold et al.
2021). As a result, safe RL has received significant atten-
tion in recent years as a crucial issue of RL during both the
learning and execution phases (Amodei et al. 2016).

Safe RL is typically formulated as constrained policy
optimization problems where the expected cumulative re-
ward is maximized while guaranteeing or encouraging the
satisfaction of safety constraints, which are modeled as
constrained Markov decision processes (CMDPs, Altman
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Figure 1: Even if safety is guaranteed at time ¢ based on
the instantaneous evaluation, safe behavior may not exist a
few steps ahead. This paper requires an agent to guarantee
long-term safety (i.e., constraint satisfaction from the time
the current time step ¢ to the terminal time step 7") in CMDPs
with stochastic state transition and binary safety feedback.

(1999)). While there are various types of constraint rep-
resentations, most of the existing studies formulated con-
straints using either expected cumulative safety-cost (Alt-
man 1999) or conditional value at risk (CVaR, Rockafellar,
Uryasev et al. (2000)); thus, satisfying safety constraints al-
most surely or with high probability received less attention
to date. Imagine highly safety-critical applications (e.g., au-
tonomous driving, healthcare, robotics) where even a sin-
gle constraint violation may result in catastrophic failure. In
such cases, RL agents need to ensure safety at every time
step at least with high probability; thus, constraint satisfac-
tion “on average” does not fit the purpose due to a large num-
ber of unsafe actions during the learning process (Stooke,
Achiam, and Abbeel 2020).

Several previous work on safe RL aimed to guarantee
safety at every time step with high probability, even dur-
ing the learning process. Unfortunately, however, existing
work has room for improvement. First, most of the previ-
ous work (Wachi and Sui 2020; Amani, Thrampoulidis, and
Yang 2021; Roderick, Nagarajan, and Kolter 2021) assumes
numeric safety feedback. In many cases, however, the safety
feedback can only take binary values indicating whether a
state-action pair is safe or unsafe, which is particularly true
when feedback comes from humans. As existing studies on
safe RL with binary safety feedback, Wachi, Wei, and Sui
(2021) modeled the safety function via a generalized lin-



State transition

Safety Additional assumption(s)
Known D/S
Wachi and Sui (2020) Yes D GP -
Amani, Thrampoulidis, and Yang (2021)  Linear S Linear Known safe policy
Wachi, Wei, and Sui (2021) Yes D GLM -
Bennett, Misra, and Kallus (2023) No S GLM Known safe policy
LoBiSaRL (Ours) No S GLM  Lipschitz continuity & conservative policy

Table 1: Comparison among existing work regarding their assumptions on a state transition, safety function, and others. In the
above table, D means deterministic state transition, and S means stochastic state transition.

ear model (GLM) while they assume known and determin-
istic state transition function. Thus, this previous work can-
not deal with general RL problems with unknown stochastic
state transition functions. Also, Bennett, Misra, and Kallus
(2023) addressed safe RL problems with binary safety feed-
back and unknown stochastic state transition under the as-
sumption that a known safe action always exists for any
state. This assumption is not valid in many safety-critical ap-
plications. For example, even an F1 driver cannot take a safe
action if a vehicle traveling at 100 km/h is 1 meter ahead
of a brick wall; thus, to avoid such situations, we need to
consider “long-term” future safety under more reasonable
assumptions, as shown in Figure 1.

Contributions. We propose an algorithm called Long-
term Binary-feedback Safe RL, LoBiSaRL. This algorithm
enables us to solve safe RL problems with binary feedback
and unknown, stochastic state transition while guarantee-
ing the satisfaction of long-term safety constraints. LOBiS-
aRL guarantees safety by modeling the binary safety func-
tion via a GLM and then pessimistically estimating the fu-
ture safety function values. Our theoretical analysis shows
that future safety can be pessimistically characterized by
1) inevitable randomness due to the stochastic state tran-
sition and 2) divergence between the current policy and a
reference policy to stabilize the state. Based on this theoret-
ical result, we optimize the policy to maximize the expected
cumulative reward while guaranteeing long-term safety. Fi-
nally, we empirically demonstrate the effectiveness of the
LoBiSaRL compared with several baselines.

2 Related Work

Safe RL. In typical safe RL problems, an agent must max-
imize the expected cumulative reward while ensuring that
the expected cumulative cost is less than a threshold. There
have been a number of algorithms for solving this type of
safe RL problem, as represented by constrained policy op-
timization (Achiam et al. 2017), reward constrained pol-
icy optimization (Tessler, Mankowitz, and Mannor 2018),
Lagrangian-based actor-critic (Chow et al. 2017), primal-
dual policy optimization (Yang and Wang 2020). In the pre-
vious papers mentioned above, however, a safety constraint
is defined using the (expected) cumulative value and the con-
straint satisfaction is not guaranteed during the learning pro-
cess (Stooke, Achiam, and Abbeel 2020). Hence, most of
the existing studies deal with less strict safety constraints

than our study that requires the agent to satisfy safety con-
straints at every time step. There has been research aimed
at guaranteeing safety at every time step, even during the
learning process. For example, Turchetta, Berkenkamp, and
Krause (2016) proposed notable algorithms that satisfy the
safety constraint with high probability by inferring the safety
function via a Gaussian process (GP). Also, Wachi, Wei, and
Sui (2021) proposed its extended algorithm that models the
safety function via a GLM, which can also deal with safe
RL problems with binary feedback. Though they succeeded
in guaranteeing safety with high probability, their theoretical
results are based on the assumptions of the known and de-
terministic state transition function. It is essentially difficult
to extend these algorithms to our problem settings with un-
known and stochastic state transitions. As existing work on
safe RL with unknown stochastic transition, Amani, Thram-
poulidis, and Yang (2021) proposed an algorithm for lin-
ear MDPs with safety constraints while Bennett, Misra, and
Kallus (2023) proposed an algorithm for safe RL problems
with binary safety feedback and stochastic transitions. Al-
though such work proposed excellent algorithms for chal-
lenging problems, the existence of a known safe policy is
assumed for any state, which does not hold in many real-
world applications as discussed in Section 1 (i.e., high-speed
vehicle example). Table 1 summarizes the problem settings
considered in existing work and this paper.

Long-term safety. In the control community, long-term
safety has been well-studied under the name of control bar-
rier function (CBF, Ames et al. (2019)). For any state s, a
CBF is a continuously differentiable function A(s) that de-
fines a safe set {s : h(s) > 0}, i.e., an invariant set where
any trajectory starting inside the set remains within the set.
The CBF is to maintain safety during the learning process,
which is particularly useful for keeping a manipulator within
a given safe space or ensuring that a robot avoids obstacles.
This advantage is beneficial for RL settings, and Cheng et al.
(2019) proposed a safe RL algorithm to guarantee long-term
safety via CBFs. Unfortunately, however, humans need to
manually define proper CBFs and it is often hard to find
them. In addition, Koller et al. (2018) proposed a learning-
based model predictive control scheme that provides high-
probability safety guarantees during the learning process un-
der the assumption that both a dominant term of the state
transition function and safe region are known a priori.



3 Problem Statement

We consider episodic finite-horizon CMDPs, which can be
formally defined as a tuple

M= (S7Av P,T, r,g,sl), (D

where S is a state space {s}, A is an action space {a},
P : S x A— A(S) is an unknown, stochastic state transi-
tion function to map a state-action pair to a probability dis-
tribution over the next states, T' € Z_ is a fixed length of
each episode, 7 : S x A — [0,1] is a (bounded) reward
function, g : S x A — {0,1} is an unknown binary safety
function, and s; € S is the initial state.! Crucially, in this pa-
per, the safety feedback is provided as a binary value; that is,
g(s,a) = 1 means that a state-action pair (s, a) is safe, and
otherwise (s, a) is unsafe. At the time step ¢ and the current
state s;, the agent takes the next action ay, receiving the next
state s;11 ~ P(- | 8¢, a¢) as well as the safety observation
9(s¢, at), until the terminal time step 7. We suppose that
safety observations contain some independent zero-mean
noise n;. We assume that the noise n; is sub-Gaussian with
fixed (positive) parameters o € R_; that is, for all ¢, we
have E[e“™ | Gi_1] < e’7*/2 where {G:} is increas-
ing sequences of sigma fields such that n; is G,-measurable
with E[n; | Gi—1] = 0. This assumption has been com-
monly made in previous work (e.g., Abbasi-yadkori, Pal,
and Szepesvari (2011), Li, Lu, and Zhou (2017)).

A deterministic policy of an agent 7 : S — A represents
a function to return actions. A metric of the quality of the
policy 7 is the following value function, i.e., the expected
value of cumulative rewards, which is defined as

St_$‘|7

forall s € S and ¢ € [T], where the expectation E[-] is
taken over the trajectories {(s,,a,)}_, induced by the pol-
icy 7 and true state transition dynamics P. We additionally
define the following action-value function (i.e., Q-function)
which means the expected value of total rewards when the
agent starts from state-action pair (s, a) at step ¢ and follows
policy 7, which is represented as

T

ZT’(ST,GT)

T=t

Vi (s) = Ex

T

ZT(ST,G-,—)

T=t

forall (s,a) € S x Aandt € [T].

A crucial point of this paper is that we wish the agent
to take only safe actions at every time step ¢; that is, the
agent needs to take a safe action a; at a state s; that satisfies
the safety constraint; that is, g(s¢,a;) = 1. As discussed in
Section 1, however, at time ¢, the agent is required to execute
safe actions in the long run so that there also will be future
safe actions from time ¢ 4 1 to 7. Hence, at every time step
t, we impose the following safety requirement:

Q7 (s,a) =E,

st:s,at:a],

Pr{g(sT,aT) =1 Vre [t,T]} >1-46, ()

'We assume that reward function is known and deterministic,
but all results presented here extend to unknown stochastic cases.

where 0 € [0,1] is a small positive scalar. Our safety con-
straint is probabilistic since it is extremely difficult to guar-
antee safety almost surely (i.e., probability of 1) due to the
unknown stochastic state transition and safety functions.

Goal. Let us clearly describe the goal we wish to achieve
in this paper. The objective of the agent is to obtain the op-
timal policy 7* : & — A to maximize the value function
V™ (s¢) under the safety constraint (2) such that

max V" (s¢) s.t. Pr{g(sT,aT) =1Vre [t,T]} >1-0.

It is quite hard to guarantee the satisfaction of the aforemen-
tioned constraint. It is because even if the agent executes an
action a; at time ¢ and state s; such that

Pr{g(st,at) = 1} >1-9, 3)

there may nor be any viable action at s;1 ~ P(s¢,a:) and
further future states. Thus, the agent must execute an ac-
tion a; to guarantee the constraint satisfaction not only for
(8¢, a¢) but also for (s, a,) forall T € [t+ 1, T]. Our safety
constraint (2) is challenging, which we will call the long-
term safety constraint in the rest of this paper, while we will
call (3) the instantaneous safety constraint.

Difficulties and assumptions. The aforementioned prob-
lem we wish to solve has several difficulties. First, if the
binary safety function does not exhibit any regularity, it is
impossible to infer the safety of state-action pairs. For ex-
ample, if the safety function value is totally random, we can
neither foresee danger nor guarantee safety. In addition, we
suppose the state transition is stochastic and unknown a pri-
ori despite that the agent must guarantee the satisfaction of
the long-term safety constraint. This difficulty requires us to
explicitly incorporate the stochasticity of the state transition
and its influence on future safety.

For the first difficulty, we assume that the safety func-
tion can be modeled as a GLM to deal with binary safety
feedback. GLMs have been studied for sequential decision-
making problems with binary feedback especially in (state-
less) multi-armed bandit literature (Filippi et al. 2010; Li,
Lu, and Zhou 2017; Faury et al. 2020) under the name of lo-
gistic bandits. Also, in (stateful) RL settings, Wachi, Wei,
and Sui (2021) addressed a safe RL problem where the
safety function is subject to a GLM under the assumption
that the state transition is a priori known and deterministic.
We now make the following assumption of the GLM struc-
ture of the safety function.

Assumption 1. There exists a known feature mapping func-
tion ¢ : S x A — R™, unknown coefficient vectors w* €
R™, and a fixed, strictly increasing (inverse) link function
w: R — [0, 1] such that
E[g(s,a)|s,a] = n(f*(s,a)), €
forall (s,a) € S x A where f* : S x A — Ris a linear
predictor defined as
[*(s,0) = ((s,0),w"), V(s,a) €S x A (5)

Without loss of generality, we further assume ||¢(s,a)|ly <
1 forall (s,a) € S x Aand |[w*||, < +/m.



In the case of the binary safety function, a suitable choice
of the link function is p(z) = exp(z)/(1 + exp(x)), lead-
ing to the logistic regression model. GLMs are more gen-
eral models, and one can verify that linear and integer-
valued functions are special cases of GLMs with u(x) = x
and p(x) = exp(z) leading to the linear regression model
and the Poisson regression model, respectively; hence, our
method can be extended to other problem settings than the
binary safety function.

In addition to the boundedness assumption on the feature
vectors and safety function values, we make the following
assumption regarding the link function.

Assumption 2. The link function p is twice differen-
tiable, and the first and second-order derivatives are re-
spectively bounded. Also, the link function p satisfies & =
infjjy -+ <1, <1 A({¢; w)) > 0.

By making Assumptions 1 and 2, it is possible to guaran-
tee the satisfaction of the instantaneous safety constraint (3)
at the current time step ¢ if there are feasible actions, as con-
ducted in Wachi, Wei, and Sui (2021). In this paper, how-
ever, the agent must guarantee safety until the terminal time
step T' (i.e., long-term safety constraint) under stochastic
state transition, which requires us to make further assump-
tions. If the feature mapping function drastically changes
with minor differences in state-action pairs, it is extremely
difficult to continue to guarantee safety until 7. Thus, we
assume the regularity of the feature mapping function as a
form of Lipschitz continuity, which is written as follows:

Assumption 3. Forall 5,5 € S and a,a € A, the feature
mapping function ¢(-,-) is Lipschitz continuous with a con-
stant Ly € R, that is,

[¢(s,a) = #(5,a)ll, < Ly - dsal(s, a), (5,a),  (6)

where ds A(-, +) is a distance metric on S X A. For ease of ex-
position, we assume that ds 4 satisfies ds 4((s,a), (5,a)) =
ds(s,5) +dala,a).
Intuitively, this assumption implies that, for similar state-
action pairs (s, a) and (8, a), the features ¢ (s, a) and ¢(5, a)
also exhibit similar values. This assumption is related to the
common assumption in RL literature as represented by Lip-
schitz MDP (Asadi, Misra, and Littman 2018; Ok, Proutiere,
and Tranos 2018).

Similarly, at a current state s, if the next state s’ ~
P(- | s,a) induced by an “insignificant” action « (that tries
to maintain the status quo) is far from s, the safety may
drastically changes. Hence, we assume the existence of a
Lipschitz-continuous conservative policy 7# : S — A to
suppress the state transition distance within a certain value.
We then assume that, as far as similar policies to the conser-
vative policy are executed, the state-transition distance can
be suppressed. Specifically, for any policy 7, we assume that
the (one-step) state transition from time ¢ to ¢ 4 1 is upper-
bounded according to the divergence between the actions
taken by 7 and 7f.

Assumption 4. Let Ly € Ry be a positive scalar. There
exists a known Ly-Lipschitz continuous policy .S = A
such that, for any states s,5 € S,

da(m(s) — n*(5)) < Ly - ds(s, 5). @)

Also, with a positive scalar n € Ry, for any policyn : S —
A, the following inequality holds for all s € S:

max ds(s,s) <d+n-da(m(s),7(s)).
L ds(s,s) < do - daln(s). 7))

Remark 1. Assumption 4 implies that the conservative pol-
icy 7t keeps the amount of the (one-step) state transition
within a certain distance d € R that is,

max  ds(s,s) <d.
s'~P(-|s,mt(s))

In the case of stochastic policies, we can use Kantorovich
distance K (-,-) to define the Lipschitz continuity of a pol-
icy; thatis, K(m(- | 8),m(- | 8)) < L - ds(s,5). Thus, the
following theoretical analysis can be extended to stochastic
policy settings. This assumption is valid in many physical
systems (e.g., control-affine systems). Intuitively, when the
policy 7 is similar to the conservative policy 7*, the upper
bound of the state transition is guaranteed to be small. As-
sumption 4 implies that when 7 = =f, the state transition
distance is always less than or equal to d. Also, as 7 be-
comes far from ¥, the distance can be larger with respect
to the term 7 - d 4 (7, 7). The existence of 7# is not restric-
tive in practice for a number of applications, and similar no-
tions have been adopted in many existing studies under the
name of the stable or telescoping policies (Lin et al. 2021;
Tsukamoto, Chung, and Slotine 2021). For instance, with
the autonomous vehicle, one may select 7t as the one to
move it at a low constant speed, and 7 is optimized such
that it can move faster under the safety constraint.

4 Characterizing Safety

Based on the problem settings and assumptions presented
in Section 3, we now present how to guarantee long-term
safety. Optimism and pessimism are essential notions in RL.
Conventionally, being optimistic has been well-adopted in
online RL literature under the name of optimism in the face
of uncertainty principle (Strehl and Littman 2008; Auer and
Ortner 2007). In contrast, pessimism is also significant when
an RL agent is trained from offline data (Jin, Yang, and Wang
2021; Buckman, Gelada, and Bellemare 2020) or needs to
satisfy safety constraints (Bura et al. 2022). A natural way
to incorporate optimism and pessimism is to derive the upper
and lower bounds of the functions of interest, which can be
conducted in a way backed by theory.

This paper expresses the upper and lower bounds in two
ways. The first is inferred by the GLMs. While the advan-
tage of this approach is to provide accurate estimation once
a larger amount of dataset has been collected, the uncertainty
term tends to be loose in the early phase of the training.
The second is based on Lipschitz continuity. In contrast to
the GLM-based approach, this approach provides moderate
bounds regardless of the amount of collected data, which
is typically useful in the early phase of training. Thus, intu-
itively, we aim to continue to derive tight bounds by deriving
them using the approach based on Lipschitz continuity in the
early phase and that based on the GLMs in the later phase.



4.1 Confidence Intervals Inferred by GLMs

We first present how to obtain theoretically-guaranteed
confidence bounds inferred by the GLMs. Hereinafter, let
the design matrix be W,, = Y7, ¢(s;,a;)9(s5,a;)",
where n € Z4 is the total number of data. Also, the
weighted Lo-norm of ¢ associated with W, is given by

Sl = Vo Wy ¢. Here, the maximum-likelihood
estimators (MLE) denoted as w is calculated by solving the

following equation:

Z(g(sjv aj) - :u’(< d)(sja Clj), w >>)¢(SJ7 aj) = O>

=1
Based on Li, Lu, and Zhou (2017), the following lemma re-
garding the confidence bounds on f* holds.

Lemma 1. Let A > 0 be given and § = 3?‘7, /log %. Then,
with a probability of at least 1 — A, the MLE satisfies
[f*(s,a) = (@(s,a), w)| < B-[|@(s, a)llyy, 1,
forall (s,a) € S x A
Therefore, at time ¢ and state s;, by choosing the next action
a; such that (¢(s¢,as), w) — 3 - H(ﬁ(st,at)HW;l >z, we
can also guarantee the satisfaction of f*(s;,a;) > z with
high probability, where z € R is a certain threshold.

4.2 Bounds by Lipschitz Continuity
We then present the upper and lower bounds inferred by the
Lipschitz continuity. Let us first define an important variable

x: € Ry called maximum divergence from the conservative
policy (MDCP) such that

da(m(sy), 7 (s¢)) < ¢, Ve [T (8)
The MDCP indicates how far the action taken by 7 is from
that by 7. Hereinafter, the summation of this new vari-
able z; plays a critical role when dealing with the long-term
safety constraint, and thus we define Xff = th: ¢, T for
any time steps t1, to € [T with t; < to. We have the follow-
ing two lemmas regarding the (true) safety linear predictor
f*. See Appendices A.2 and A.3 for the proofs.
Lemma 2. Suppose the policy 7 satisfies (8). Let Ly, Lo,
and Ls be constants that are respectively defined as

Ly = m Ly, Lo = I_/ﬁ -CiLg = 2—}—7’]I/ﬁ.
Sett := T —t and recall that X, ]" := Zf;tlﬂ X
with xy.7 ‘= Ty, Ty, ..., 2T, define
F(t,ze7) = L1 {Lot + (L3 — 1)y + L3 X3 + a7}
Then, we have
[f* (s, m(s7)) = f*(s,7(s0))| < F(t, wer).
Intuitively, Lemma 2 characterizes the present-to-future dif-

ference in terms of f*, which provides us the lower bound
of the future safety linear predictor.

Lemma 3. Define f*(s) == f*(s,n%(s)) forall s € S. Also,
suppose the policy 7 satisfies (8). Then, we have

|f*(5t,7f($t)) - fn(51)| <L {L2t+ L3X§_1 + It} .
In contrast to Lemma 2, Lemma 3 characterizes the past-to-
present difference in terms of f*. Using this lemma, we infer
the lower bound of f* at the current time step ¢.

Finally,

4.3 Resulting Lower Bound of f*

As we discussed previously, it is a simple yet powerful way
to use the safety lower bound for introducing pessimism in
safe RL. Let £ : S x A — R denote a lower bound of the true
safety linear predictor, f*. To obtain a tighter bound, this pa-
per combines the two lower bounds presented in Section 4.1
and 4.2, respectively. Specifically, based on Lemma 1 and 3,
we obtain the following tighter bound:

(8¢, ap) = max (EGLM (8¢, a1), LLipschitz (st at)) ) )]

where fgim @ S x A — R and luipschiz * S X A = R
are pessimistic safety linear predictors inferred by GLM and
Lipshitz continuity, which are respectively defined as

Corm(st, at) = (P(st, ar), W) — B [[d(st, ar) |1
Clipschivz (8¢, @) = f*(s1) — Ly {Lat + LsX{ ' + 2} .

4.4 Long-term Safety Guarantee

We present theoretical results regarding the lower bound of
the safety linear predictor f*, which leads to the long-term
safety guarantee defined by (2). We now present a lemma
regarding the safety linear predictor at time .

Lemma 4. Ar every time step t € [T), we have
[ (se,a8) > £(s¢, a4) (10)
with a probability of at least 1 — A.
This lemma implies that we can guarantee the instantaneous
safety constraint (3) by choosing the next action such that
U(s¢,ar) >z, with pu(z)=1-4, 11

with a probability of at least 1 — A.

In this paper, however, we need to additionally require the
satisfaction of the long-term safety constraint; thus, we are
particularly interested in future safety. We now provide the
following lemma in terms of the pessimistic safety linear
predictor at the terminal time step 7"

Lemma 5. Recall T is the terminal time step and set t =
T — t. At every time step t € [T'], we have

f*(sTv (lT) 2 ‘g(sh at) - J__.(tv xt:T)v
with a probability of at least 1 — A.

Corollary 1. Suppose, at state sy, the agent with a policy ©
executes the action a; while tuning x4, 441, ..., T so that

U(st,a0) = F(t,zpr) > 2 (12)

holds. Then, for all T € [t,T), there exist safe state-action
pairs (s;,a,) such that:

fr(sriar) 22, T[T (13)
with a probability of at least 1 — A.

The proofs of Lemma 5 and Corollary 1 are written in Ap-
pendix A 4.

Finally, we present a main theorem on the long-term
safety constraint. Specifically, we guarantee that an agent
continues to take safe actions from time ¢ to 7" with a higher
probability than a predefined threshold, by properly tuning
the MDCPs, x, for all T € [t, T.
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Figure 2: (a) Bounds by Lipschitz continuity for the conservative policy. (b) In the early phase of training, the lower bound
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Z1,%2,...,2:—1. Depending on the safety margin at time ¢, we need to control z;, x;11, . .., 7 for ensuring future safety. (c)
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safety margin may increase.

Theorem 1. Suppose, at state s;, the agent executes the ac-
tion ay while tuning the MDCPs xy,Tyy1, ..., 21 so that
(12) holds. Set § :== 1 — (1 — u(z))*. Then, we have

Pr{g(sﬁa,,) —1vre [t,T]} >1-46, Vtell),

— l.e. the long-term safety constraint is satisfied — with a
probability of at least 1 — A.

This theorem guarantees that at every time step ¢, the agent
can take safe actions from ¢ to 7" with high probability, de-
spite unknown, stochastic state transition and binary safety
feedback. The proof sketch is as follows. By Corollary 1,
when (12) is satisfied, f*(x,,a;) > z holds for all 7 €
[t, T] with high probability; that is, the existence of future
safe actions are guaranteed with high probability. Theorem 1
provides a stricter safety guarantee than the one in exist-
ing safe RL literature with instantaneous safety constraints
such as Wachi, Wei, and Sui (2021). If we tried to guarantee
safety while using the instantaneous constraint (3), the agent
would fall into worse situations and then lose the choices of
safe actions due to the stochastic state transition.

5 LoBiSaRL Algorithm

We finally propose our LoBiSaRL algorithm. The algorithm
flow is shown in Algorithm 1. Based on Theorem 1, we
should solve the following policy optimization problem un-
der a (conservative) long-term safety constraint:

max V;"(s;) subjectto £(st,a:) — F(t, xer) > 2.

Note that, the term F (¢, 2.7) can be transformed into

f(t7 :L't:T) = L1 . { Lgf + (L3 — 1){Et + Lngjfll + I'T}.
(A) (B) (©)

The above inequality can be interpreted as follows. (A) is
an inevitable term that even the conservative policy 7# can-
not avoid. (B) depends only on the current action at time ¢,
and (C) depends on the future actions from time ¢ + 1 to 7.
We can make (B) and (C) terms zero by executing the same
actions as the conservative policy.

Algorithm 1: Long-term Binary Safe RL (LoBiSaRL)

: Input: Initial Lagrange multiplier A;. Constants L1, L2, and
L3. conservative policy 7*.

2: for iterationi = 1,2,... do

3 for timet =1,2,...,7 do

4 m « argmax, V" (s¢) — \i (—x¢ + Ls X! ' +z7)
5: A — {a €A|£(St,a)*L1{L2{+ (Lg*l)wt} > Z}
6: if m¢(s¢) € A, then
7.
8
9
0

Ju—

at < m(st)
else
at < argmin, ¢ 4, lla — ¢ (s¢)|ly
Take a; and then receive a next state si+1 ~ P(s¢,ay),
reward r(s, a), and (binary) safety g(s, a).
11: Update value function V;™
12:  H; :== ming ({(s¢,7(s¢)) — 2)
13:  Update the Lagrange multiplier to A\;+1 based on H;

A key to solving the aforementioned constrained policy
optimization problem is how we tune ., for all 7 = [t, T'.
Intuitively, we want to set x to be large in terms of reward
maximization while x should be small in terms of long-term
safety guarantee. Hence, we use a Lagrangian method to
simultaneously maximize the expected cumulative reward
while tuning the magnitude of x for the satisfaction of the
safety constraint. Specifically, with a Lagrange multiplier
A € R, we solve the following max-min problem:

maxrgig Vit (s¢) = A (—xe + La X P4 ap). (14)

By setting A large, we enforce the agent to make x small
and thus execute similar actions to the conservative policy.
When the conservative policy has much safety margin, the
agent should explore the state and action spaces while taking
more different actions. The degree of freedom is optimized
by means of the Lagrange multiplier \.

For the current policy 7, the minimum safety requirement
that the agent needs to satisfy at every time step ¢ is

O(sg,m(sy)) — L1 {Lot + (Lg — V) } > 2. (15)

The aforementioned inequality is derived by setting the (C)
term to be 0, which corresponds to executing the same ac-
tions to the conservative policy from time £+ 1 to 7". In other
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Figure 3: Example reward, binary safety, and value functions. In this paper, we consider a safe RL problem with binary safety
feedback; thus, there is an unsafe region (the white region in the (c)) where the agent is not allowed to visit.

words, at time step ¢, the next action a; must be chosen with
the following “safe” action set:

Ay ={a € A|l(sy,a) — Li{Lot + (Lz — 1)y} > 2}
To optimize the Lagrange multiplier A, we define the follow-
ing minimum safety margin at ¢-th episode:

H; = mtin (U(s¢,m(8¢)) — 2).

When H; is large, the agent is allowed to explore further by
taking different actions from the conservative policy. In con-
trast, when H; is small, the agent needs to prioritize safety
without diverging from the conservative policy.

6 Experiments

In this section, we evaluate the performance of LoBiSaRL in
a synthetic grid-world environment.

Settings. This environment is 20 x 20 square grids in
which reward and safety functions are randomly generated.
To avoid trivial situations where the optimal policy wanders
around the initial position (0,0), we generate the reward
function so that the reward-rich region is far from the ini-
tial state. The safety function is generated so as to follow a
GLM, and the agent receives the binary safety feedback. At
every time step, the agent takes an action from four action
candidates (up, right, down, left). Also, the state transition
function is stochastic; thus, the agent can go in the intended
direction 80% of the time (if there is no wall). We provide
10 initial samples for initializing the GLM and set T' = 50.

Baselines. We compare the performance of LoBIS-
aRL with four baselines. The first baseline is called RAN-
DOM agent, which randomly chooses the next action with-
out any consideration of reward and safety. The second is a
UNSAFE agent. This agent purely maximizes the cuamulative
reward while ignoring the safety issues. The third baseline is
a LINEAR agent. This algorithm is based on Amani, Thram-
poulidis, and Yang (2021) to model the safety function via a
linear model. The final baseline is a INSTANTANEOUS agent.
This algorithm only considers the instantaneous safety con-
straint (3) as in Wachi, Wei, and Sui (2021) and cannot guar-
antee the satisfaction of the long-term constraint in an envi-
ronment with the stochastic state transition.

Reward Unsafe actions

RANDOM 0.324+0.24 23.24+10.3
UNSAFE 1.00 £ 0.00 26.8 +£13.6
LINEAR 0.73 +0.13 18.3 £5.7
INSTANTANEOUS 0.86 = 0.10 3.3+2.2
LoBiSaRL (Ours)  0.76 £ 0.12 0.0 £ 0.0

Table 2: Experimental results. Reward is normalized with
respect to UNSAFE agent.

Results. Table 2 summarizes our experimental results. To
obtain the results, we run each algorithm while generating
100 different random environments. As for safety, LoBiS-
aRL is the only algorithm to guarantee the satisfaction of the
safety constraint in the long run. RANDOM, UNSAFE, and
LINEAR execute a lot of unsafe actions. INSTANTANEOUS
agent is much safer than the above three baselines but some-
times violates the safety constraint due to the stochasticity
of the environment. In contrast, LoBiSaRL is often too con-
servative and the performance in terms of reward is worse
than INSTANTANEOUS. Given that LoBiSaRL is an algo-
rithm for safety-critical applications, however, it would be
more important to guarantee long-term safety if the perfor-
mance degradation is minor in terms of reward.

7 Conclusion

We formulate a safe RL problem with stochastic state tran-
sition and binary safety feedback and then propose an algo-
rithm called LoBiSaRL. This algorithm maximizes the ex-
pected cumulative reward while guaranteeing the satisfac-
tion of the long-term safety constraint. Under the assump-
tions regarding the Lipschitz continuity of the feature map-
ping function and the existence of a conservative policy, Lo-
BiSaRL optimizes a policy while ensuring that there is at
least one viable action until the terminal time step. We the-
oretically guarantee long-term safety and empirically evalu-
ate the performance of LoBiSaRL comparing with several
baselines. Moving forward, it is an interesting direction to
improve performance in terms of reward.
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A Proofs
A.1 Preliminary Lemmas

Lemma 6. For any states s,5 € S and (deterministic) policies 7, 7, we have

l¢(s,m(5)) = &(5,7(3)ly < Lo - ds(s,5) + Lg - da(w(s), 7(5))-

Proof. By Assumption 3, for any states s, 5 € S and policies 7, 7, we have

¢(s,m(s)) = &(5,7(5))lly < Lo - dsal(s, m(s)), (5,7(5))).
By definition of ds 4, we have
dSA((57 7T(S))v (57 7?(5))) = ds(s, §) + dA(W(S)’ 7?(5)),

In the above transformation, we used the assumption that policies 7, 7 are deterministic. In summary, the following inequality
holds:

6, 7(s)) = (5, T(3))ly < Lo - ds(s,5) + L - da(w(s), 7(5)).
O

Lemma 7. Suppose, at every time step t, the agent’s policy 7 satisfies H?T(St) — 7 (sy) H2 < x4. Then, for any policy m and two
succeeding states sy and sg11 ~ P(- | s¢,7(st)), we have

P(st+1,m(st41)) — @(st,m(81)) [l < L - (1 + Ly) - ds(sts Se41) + Lo - (w6 + Tr1)- (16)

Proof. By Lemma 6, for any policy 7 and two succeeding states s; and s;1 ~ P(- | s¢, 7(s¢)), we have

[@(st41,m(s141)) — d(se, 7(5e))|ly < L - ds (st Se41) + Lo - da(m(se), m(se41)).

By applying the triangle inequality to the second term, we have

da(m(se), m(s141)) < da(m(se), 7 (se)) + da(m? (se), 7 (se41)) + da(m(sp41), T(141))
<@y + Ly - ds(st, Se41) + Teg1-

In the above transformation, we used Assumption 4. In summary, the following desired inequality can be obtained:

(st T(se11)) — @5, m(se)) |l < L - ds(St, St41) + Lo - (w1 + Ly - ds(st, Se41) + Teg1)
= L¢ ! (1 + Lﬁ) : ds(st; StJrl) + L¢ . (l't + l'tJrl),

O

Lemma 8. Set Eﬁ = Ly + 1. Suppose that, for any time step t € [T and state s, € S, a policy m takes an action such that
da(m(s¢), n(s¢)) < x4 Then, we have

[@(st41,7(5141)) — D50, 7(50))
<Ly {Ly-d+ (1+nLy) - o+ w411}

Proof. By Assumption 4, we have
dS(St, St+1) < CZ—F n-Tt.
By applying the above inequality to (16), the following inequality holds:

(str1,m(s041)) — B(se,m(s0))|ly < Lo - {(1+ Ly) - d+ (1 +n+ Lyn) - 2 + 411}
= L¢ . {l_/ﬁ . J—‘r (1 +’I7I_Ju) - Tt +J}t+1}.

Then we have the desired lemma. O



A.2 Proof of Lemma 2

Lemma 9. Suppose that Assumptions 3 and 4 hold. Also assume that, at every time step t, the agent’s policy m satisfies
H?T St) — ﬂﬁ (st H2 < x¢. Then, we have

¢(s,m(s7)) — d(se, m(se)) I, §L¢'{Eﬁ'd'(T_t)+(1+77Eﬁ) x+ (24 nLy) - Z xT+xT}
T=t+1

Proof. By triangle inequality, we have

T-1

(s, m(57)) = d(se,w(se))lly < D Id(sivr, w(sivr)) = d(si,m(s0))ll, (17)

i=t
By Lemma 8, the following inequalities hold for all ¢ € [t, T — 1]:
¢(si1,m(si1)) — S(si, m(si))lly = Lo - {Lg - d+ (1 +0Ly) - w5 + @i } (18)
By summing the above inequality up from¢ =¢, ¢+ 1,...,7 — 1,
l¢(s7, m(s7)) = d(st,m(se))lly < L - {Ly - d+ (1 +nLg) - @ + w41}

+ L¢ . {Eu . CZ+ (]. + ’I]Z/ﬂ) c Tt41 + $t+2}

+ PN

+ Ly {Ly-d+ (1 +nLy) - 2r—1 + 27}

_L¢~{Lu~J~(Tt)+(1+nLn) z + (2 +nLg) - Z xTerT}
T=t+1

Then we obtained the desired lemma. O

Proof. (of Lemma 2) By Assumption 1 and Cauchy—Schwarz inequality,

[f*(sm,7m(s7)) = f7 (50, m(s0))| < N[w™ [l - | ¢(s, w(s7)) — plse, wls1))l,
< Vm - l¢(sr, w(s7)) = S(se, m(s0))ll, -

By combining the above inequality and Lemma 9, we have

[P (szam(s1)) = [*(s0,7(s1))] <m~L¢-{Lu-&~<T—t>+<1+nLﬁ> vk @l S wr+wT}

T=t+1

Recall the definitions of Ly, Lo, and Ls; that is, L1 == v/m - Ly, Ly == Ly - d, and Ls := 2 + nL;. Then, the following
inequalities holds:

|f*(sTym(sT)) — f*(st,m(se))| < Ly - {Lg (T —t)+ (L3 —1) x4+ L3 - z_: T, —l—xT} )

T=t+1

By definitions of  := T — t and X,/ 7" == Zf:_tlﬂ x,, we have

|f*(sp,m(sT)) — f*(se,m(s¢))| S Ly {La-t+ (L3 — 1) - @ + L3 - Xg:ll +xr}.

A.3 Proof of Lemma 3

Lemma 10. Suppose that Assumptions 3 and 4 hold. Also assume that, at every time step t, the agent’s policy 7 satisfies
||7T St) —7Tﬂ (s¢ H2 < x¢. Then, we have

[6(se,m(s1)) = ps1,m(s1))lly < Lg - {Lti cdt4 (L+nLy) a1+ (240l - Yz + xt} '

T=2



Proof. Similarly to the proof of Lemma 2, we sum up the inequality (16) for¢ = 1,2,...,¢ — 1 and then obtain
l6(st w(s0) = d(s1,m(s1))ly < Lo - {Ly - d+ (1 +nLg) - 1 + 22}
+L¢~{Eﬁ-cz+(1+77[_/ﬁ) -xg + w3}
+ Ly {Lg-d+ (1 +nLy) ey + a4}

t—1
:L¢-{Eﬁ-d~t+(1+77[_/ﬁ)-x1+(2+nfu)~2xr+xt}.

T=2
Then we obtained the desired lemma. ]

Lemma 11. Suppose the policy T takes the same action to the conservative policy  at the initial time step; that is, we set
7(s1) = 7t(s1) and then 1 = 0. We then have

| p(se, me(s0)) — (b(sl,ﬂ'ﬁ(sl))Hz <Lg- {Lli d-t+(2+nLy) - i:z:T + xt} .

T=2

Proof. (of Lemma 3) By Assumption 1,

£ (sem(se)) = (s (s1))] < flw? [l - @5t me(s0)) = (s, ()
<vm- Hﬁb(stﬁt(st)) - ¢(31>7Tu(51))||2 ‘

By combining Lemma 11 and the aforementioned inequality, we have

t—1
|f*(se:m(s0) = F*(s1, 7 (51))] < [lw*[|, - Lg - {Eﬁ ot (24 L) Y @+ ast} :

T=2

Define f*(s) :== f*(s,n%(s)) for all s € S. Based on the definitions of Ly := \/m - Ly, Ly := Ly - d, and L3 == 2 + Ly, we
have

|f*(st,7r(st)) — fﬁ(sl)’ <I {Lgt-l- L3X§71 + xt} )

A4 Proof of Lemma 4
Proof. (of Lemma 4) By Lemma 1, the following inequality holds regarding the lower-bound based on GLM:
I (st,at) > Lorm(se, ar) (19)

with a probability of at least 1 — A. Also, by Lemma 3, the following inequality holds (with a probability of 1) regarding the
lower-bound based on the Lipschitz continuity:

f*(St, at) > gLipschitz(Sta at)~ (20)

By definition, (s, a;) == max(¢gLm(S¢, at), CLipschiiz(St, a¢)); then, we have
F(seyae) > U(st, at) (21
with a probability of at least 1 — A. O

A.5 Proofs of Lemma 5 and Corollary 1
Proof. (of Lemma 5) By Lemma 2,
f*(ST,’]T(ST)) > f*(St,’]T(St)) — I {th_—f— (L3 — 1)!1,‘t + Lgthj:ll + {IJT} .

Also, by Lemma 4, at time step ¢, we have
[ (st ae) > £(s¢,at)
By combining the above two inequalities, we have

FH(srom(sT)) > U(s¢,ar) — Ly { Lot + (L3 — D)y + Ly X7 + a7}



Proof. (of Corollary 1) For a scalar z € R, suppose that the following inequality holds:
(s ar) — Ly { Lot + (Ly — )z + Ls X' + a7} > 2
Then, by Lemma 5, the following inequality also immediately holds:
f(sr,m(st)) > 2.
In addition, by definitions, we have L1 > 0, Ly > 0, L3 > 1, and 2, > 0,V7 € [T]. Thus, by Lemma 4, we have
F(seym(se)) > €(st, m(st)) > 2.
The aforementioned inequalities hold for all 7 € [¢, T; thus, we have

[ (srym(se)) > 2, Vrelt,T]

O
A.6 Proof of Theorem 1
Proof. (of Theorem 1) Let Y; be the event that the following inequality is satisfied:
f(sg,ae) > z. (22)
Also, Let Z; be the event that the following inequality holds:
b(sy,ay) — Ly {Lgf—thrLgXtT_lJr:vT} > 2. (23)
When (23) holds, we have
F(sman) >z, ¥reltT),
under Assumptions 3 and 4 as well as Corollary 1; hence, the above inequality means the satisfaction of
Pr{Y;,Ys1,....Yr | Z } = 1. (24)

By Lemma 4, the lower-bound / is probabilistic; that is, Pr{Z;} > 1 — A; hence,
Pr{Y;,YtH,...,YT} —1-A,
which means that
Pr{ f(sryar) >z V1 elt,T) } =1-—A.

Finally, the binary safety feedback is stochastic per the GLM; that is, at every time step 7 € [t, T, safety feedback of 1 can be
obtained with a probability at least 1 — u(z). In summary, we have

Pr{g(sT,aT) —1Vre [t,T]} > (1 p(2).



