Long-term Safe Reinforcement Learning with Binary Feedback

Akifumi Wachi¹ Wataru Hashimoto² Kazumune Hashimoto²

¹LINE Corporation

²Osaka University

AAAI 2024

Long-term Safe Reinforcement Learning with Binary Feedback

イロト イボト イヨト イヨト

ъ

Safe Reinforcement Learning

- Safe reinforcement learning (RL) is a promising paradigm for applying RL algorithms to real-world applications (Garcia and Fernández, 2015).
- Safe RL is beneficial in safety-critical decision-making problems, such as autonomous driving, healthcare, and robotics, where safety requirements must be incorporated to prevent RL policies from posing risks to humans or objects (Dulac-Arnold et al., 2021).
- Safe RL has received significant attention in recent years as a crucial issue of RL during both the learning and execution phases (Amodei et al., 2016).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Typical Safe RL Approaches

- Safe RL is typically formulated as constrained policy optimization problems where the expected cumulative reward is maximized while guaranteeing or encouraging the satisfaction of safety constraint.
- Satisfying safety constraints almost surely or with high probability received less attention to date.

・ロッ ・ 日 ・ ・ 日 ・ ・ 日 ・

э

Strongly Relevant Safe RL Appraoches

- Several previous work on safe RL aimed to guarantee safety at every time step with high probability, even during the learning process.
- However, existing work has room for improvement regarding strong assumptions.

	State transition		Safety	Additional assumption(s)	
	Known	D/S	Salety		
Wachi and Sui (2020)	Yes	D	GP	-	
Amani et al. (2021)	Linear	S	Linear	Known safe policy	
Wachi et al. (2021)	Yes	D	GLM	-	
Bennett et al. (2023)	No	S	GLM	Known safe policy	
LoBiSaRL (Ours)	No	S	GLM	Lipschitz continuity & conservative policy	

Table: Comparison among existing work regarding their assumptions on a state transition, safety function, and others (D means deterministic state transition, and S means stochastic state transition).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Our Contributions

- Propose an algorithm called Long-term Binary-feedback Safe RL, LoBiSaRL.
- LoBiSaRL enables us to solve safe RL problems with binary feedback and unknown, stochastic state transition while guaranteeing the satisfaction of long-term safety constraints.
- Theoretically show that future safety can be pessimistically characterized by 1) inevitable randomness due to the stochastic state transition and 2) divergence between the current policy and a reference policy to stabilize the state.
- Empirically demonstrate the effectiveness of the LoBiSaRL compared with several baselines.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Constrained Markov Decision Processes (CMDPs)

• Consider episodic finite-horizon CMDPs, which can be formally defined as a tuple

$$\mathcal{M} \coloneqq (\mathcal{S}, \mathcal{A}, P, T, r, g, s_1). \tag{1}$$

- \mathcal{S} is a state space $\{s\}$ and \mathcal{A} is an action space $\{a\}$
- $P: S \times A \rightarrow \Delta(S)$ is an unknown, stochastic state transition function to map a state-action pair to a probability distribution over the next states
- $T \in \mathbb{Z}_+$ is a fixed length of each episode
- $r: \mathcal{S} \times \mathcal{A} \rightarrow [0,1]$ is a (bounded) reward function
- $g: \mathcal{S} \times \mathcal{A} \rightarrow \{0, 1\}$ is an unknown binary safety function
- $s_1 \in \mathcal{S}$ is the initial state

・ 同下 ・ ヨト ・ ヨト

Problem Statement

Goal. This paper aims to obtain the optimal policy $\pi^* : S \to A$ to maximize the value function $V_t^{\pi}(s_t)$ under the following safety constraint such that

$$\max_{\pi} V_t^{\pi}(s_t) \quad \text{s.t.} \quad \Pr\Big\{g(s_{\tau}, a_{\tau}) = 1 \quad \forall \tau \in [t, T]\Big\} \ge 1 - \delta.$$

Remark

It is quite hard to guarantee the satisfaction of the aforementioned constraint. It is because even if the agent executes an action a_t at time t and state s_t such that

$$\Pr\left\{g(s_t, a_t) = 1\right\} \ge 1 - \delta,\tag{2}$$

there may *not* be any viable action at $s_{t+1} \sim P(s_t, a_t)$ and further future states.

Difficulties and Assumptions I

The problem we wish to solve has difficulties; hence, we make the following assumptions.

Difficulty 1. If the binary safety function does not exhibit any regularity, it is impossible to infer the safety of state-action pairs.

Assumption 1. There exists a known feature mapping function $\phi : S \times A \to \mathbb{R}^m$, unknown coefficient vectors $w^* \in \mathbb{R}^m$, and a fixed, strictly increasing (inverse) link function $\mu : \mathbb{R} \to [0, 1]$ such that

$$\mathbb{E}[g(s,a) \mid s,a] = \mu(f^{\star}(s,a)), \tag{3}$$

for all $(s,a) \in \mathcal{S} \times \mathcal{A}$, where $f^{\star} : \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ is a linear predictor defined as

$$f^{\star}(s,a) \coloneqq \langle \boldsymbol{\phi}(s,a), \boldsymbol{w}^{\star} \rangle, \quad \forall (s,a) \in \mathcal{S} \times \mathcal{A}.$$
(4)

イロト イヨト イヨト

Difficulties and Assumptions II

Difficulty 2. The state transition is stochastic and unknown a priori \rightarrow To guarantee the satisfaction of the long-term safety constraint, we must explicitly incorporate the stochasticity of the state transition and its influence on future safety.

Assumption 2. For all $s, \bar{s} \in S$ and $a, \bar{a} \in A$, the feature mapping function $\phi(\cdot, \cdot)$ is Lipschitz continuous with a constant $L_{\phi} \in \mathbb{R}_+$; that is,

$$\|\boldsymbol{\phi}(s,a) - \boldsymbol{\phi}(\bar{s},\bar{a})\|_2 \le L_{\phi} \cdot d_{\mathcal{SA}}((s,a),(\bar{s},\bar{a})),\tag{5}$$

where $d_{\mathcal{SA}}(\cdot, \cdot)$ is a distance metric on $\mathcal{S} \times \mathcal{A}$. For ease of exposition, we assume that $d_{\mathcal{SA}}$ satisfies $d_{\mathcal{SA}}((s, a), (\bar{s}, \bar{a})) = d_{\mathcal{S}}(s, \bar{s}) + d_{\mathcal{A}}(a, \bar{a})$.

イロト イヨト イヨト

I na∩

Difficulties and Assumptions III

Assumption 3. Let $L_{\sharp} \in \mathbb{R}_+$ be a positive scalar. There exists a known L_{\sharp} -Lipschitz continuous conservative policy $\pi^{\sharp} : S \to A$ such that, for any states $s, \bar{s} \in S$,

$$d_{\mathcal{A}}(\pi^{\sharp}(s) - \pi^{\sharp}(\bar{s})) \le L_{\sharp} \cdot d_{\mathcal{S}}(s, \bar{s}).$$
(6)

Also, with a positive scalar $\eta \in \mathbb{R}_+$, for any policy $\pi : S \to A$, the following inequality holds for all $s \in S$:

$$\max_{s' \sim P(\cdot|s,\pi(s))} d_{\mathcal{S}}(s,s') \le \bar{d} + \eta \cdot d_{\mathcal{A}}(\pi(s),\pi^{\sharp}(s)).$$

To guarantee long-term safety, it is important to properly tune **the maximum divergence from the conservative policy (MDCP)**.

イロト イヨト イヨト

Characterizing Safety

We first obtain the lower bounds of the safety linear predictor f^* :

$$\ell(s_t, a_t) \coloneqq \max(\ell_{\mathsf{GLM}}(s_t, a_t), \ell_{\mathsf{Lipschitz}}(s_t, a_t)), \tag{7}$$

where $\ell_{GLM} : S \times A \to \mathbb{R}$ and $\ell_{Lipschitz} : S \times A \to \mathbb{R}$ are pessimistic safety linear predictors inferred by GLM and Lipshitz continuity, which are respectively defined as

$$\begin{split} \ell_{\mathsf{GLM}}(s_t, a_t) &\coloneqq \langle \boldsymbol{\phi}(s_t, a_t), \hat{\boldsymbol{w}} \rangle - \beta \cdot \| \boldsymbol{\phi}(s_t, a_t) \|_{W_n^{-1}}, \\ \ell_{\mathsf{Lipschitz}}(s_t, a_t) &\coloneqq f^{\sharp}(s_1) - L_1 \left\{ L_2 t + L_3 X_1^{t-1} + x_t \right\}, \end{split}$$

Note: L_1, L_2 and L_3 are Lipschitz constants.

・ 戸 ト ・ ヨ ト ・ ヨ ト

э

Theoretical Results

Theorem (informal)

Suppose, at state s_t , the agent executes the action a_t while tuning the MDCPs $x_t, x_{t+1}, \ldots, x_T$ so that the following inequality holds.

$$\ell(s_t, a_t) - L_1\left\{L_2(T-t) - (L_3 - 1)x_t + L_3 X_{t+1}^{T-1} + x_T\right\} \ge z \tag{8}$$

Set $\delta \coloneqq 1 - (1 - \mu(z))^{T-t}$. Then, we have

$$\Pr\left\{g(s_{\tau}, a_{\tau}) = 1 \;\; \forall \tau \in [t, T]\right\} \ge 1 - \delta, \quad \forall t \in [T],$$

- i.e. the long-term safety constraint is satisfied - with a high probability.

イロト イヨト イヨト

Experiments

- $\bullet\,$ Grid-world environment with 20×20 square grids with random reward and safety.
- INSTANTANEOUS agent is much safer than RANDOM, UNSAFE, LINEAR baselines but sometimes violates the safety constraint.
- As for safety, LoBiSaRL is the only algorithm to guarantee the satisfaction of the safety constraint in the long run.
- LoBiSaRL is often too conservative and the performance in terms of reward is worse than INSTANTANEOUS.

	Reward	Unsafe actions
Random	0.32 ± 0.24	23.2 ± 10.3
UNSAFE	1.00 ± 0.00	26.8 ± 13.6
LINEAR	0.73 ± 0.13	18.3 ± 5.7
INSTANTANEOUS	0.86 ± 0.10	3.3 ± 2.2
LoBiSaRL (Ours)	0.76 ± 0.12	0.0 ± 0.0

Table: Experimental results. Reward is normalized with respect to UNSAFE agent.

Long-term Safe Reinforcement Learning with Binary Feedback

э

Conclusion

- Formulate a safe RL problem with stochastic state transition and binary safety feedback and then propose an algorithm called LoBiSaRL.
- Under the assumptions regarding the Lipschitz continuity of the feature mapping function and the existence of a conservative policy, LoBiSaRL optimizes a policy while ensuring that there is at least one viable action until the terminal time step.
- Theoretically guarantee long-term safety and empirically evaluate the performance of LoBiSaRL comparing with several baselines.

Contact: akifumi.wachi@lycorp.co.jp

・ 同下 ・ ヨト ・ ヨト

Reference I

- Amani, S., Thrampoulidis, C., and Yang, L. (2021). Safe reinforcement learning with linear function approximation. In *International Conference on Machine Learning (ICML)*.
- Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., and Mané, D. (2016). Concrete problems in Al safety. arXiv preprint arXiv:1606.06565.
- Bennett, A., Misra, D., and Kallus, N. (2023). Provable safe reinforcement learning with binary feedback. In *International Conference on Artificial Intelligence and Statistics (AISTAT)*.
- Dulac-Arnold, G., Levine, N., Mankowitz, D. J., Li, J., Paduraru, C., Gowal, S., and Hester, T. (2021). Challenges of real-world reinforcement learning: definitions, benchmarks and analysis. *Machine Learning*, pages 1–50.
- Garcia, J. and Fernández, F. (2015). A comprehensive survey on safe reinforcement learning. *Journal of Machine Learning Research (JMLR)*, 16(1):1437–1480.
- Wachi, A. and Sui, Y. (2020). Safe reinforcement learning in constrained markov decision processes. In *International Conference on Machine Learning (ICML)*.
- Wachi, A., Wei, Y., and Sui, Y. (2021). Safe policy optimization with local generalized linear function approximations. *Neural Information Processing Systems (NeurIPS)*.