

Long-term Safe Reinforcement Learning with Binary Feedback

Akfumi Wachi¹, Wataru Hashimoto², Kazumune Hashimoto²

 1 LY Corporation 2 Osaka University

Our Contributions

- Propose an algorithm called LoBiSaRL.
- LoBiSaRL enables us to solve safe RL problems with binary feedback and unknown, stochastic state transition while guaranteeing the satisfaction of long-term safety constraints.
- Theoretically show that future safety can be pessimistically characterized by 1) inevitable randomness due to the stochastic state transition and 2) divergence between the current policy and a reference policy to stabilize the state.
- Empirically demonstrate the effectiveness of the LoBiSaRL compared with several baselines.

Safe Reinforcement Learning

- Safe reinforcement learning (RL) is a promising paradigm for applying RL algorithms to real-world applications (Garcıa and Fernández, 2015).
- Safe RL is beneficial in safety-critical decision-making problems, such as autonomous driving, healthcare, and robotics, where safety issues must be incorporated to prevent RL policies from posing risks to humans or objects.
- Safe RL has received significant attention in recent years as a crucial issue of RL during both the learning and execution phases (Amodei et al., 2016).

Existing Safe RL Approaches

- Safe RL is typically formulated as constrained policy optimization problems where the expected cumulative reward is maximized while guaranteeing or encouraging the satisfaction of safety constraint.
- Satisfying safety constraints almost surely or with high probability received less attention to date.
- Several previous work on safe RL aimed to guarantee safety at every time step with high probability, even during the learning process.
- However, existing work has room for improvement regarding strong assumptions.

	State transition		Safety	Additional assumption(s)	
	Known	D/S	Jaicty		
Wachi and Sui (2020)	Yes	D	GP	_	
Amani et al. (2021)	Linear	S	Linear	Known safe policy	
Wachi et al. (2021)	Yes	D	GLM	-	
Bennett et al. (2023)	No	S	GLM	Known safe policy	
LoBiSaRL (Ours)	No	S	GLM	Lipschitz continuity & conservative policy	

Table 1. Comparison among existing work regarding their assumptions on a state transition, safety function, and others (D means deterministic state transition, and S means stochastic state transition).

Problem Formulation

Consider episodic finite-horizon CMDPs, which are defined as a tuple $\mathcal{M} := (\mathcal{S}, \mathcal{A}, P, T, r, g, s_1)$, where \mathcal{S} is a state space $\{s\}$, \mathcal{A} is an action space $\{a\}$, $P: \mathcal{S} \times \mathcal{A} \to \Delta(\mathcal{S})$ is an unknown, stochastic state transition function to map a state-action pair to a probability distribution over the next states, $T \in \mathbb{Z}_+$ is a fixed length of each episode, $r: \mathcal{S} \times \mathcal{A} \to [0,1]$ is a reward function, $g: \mathcal{S} \times \mathcal{A} \to \{0,1\}$ is an unknown binary safety function, and $s_1 \in \mathcal{S}$ is the initial state.

Goal. This paper aims to obtain the optimal policy $\pi^*: \mathcal{S} \to \mathcal{A}$ to maximize the value function $V_t^{\pi}(s_t)$ under the following safety constraint such that

$$\max_{\pi} V_t^{\pi}(s_t) \text{ s.t. } \Pr\Big\{g(s_{\tau}, a_{\tau}) = 1 \ \forall \tau \in [t, T]\Big\} \geq 1 - \delta.$$

Remark. It is quite hard to satisfy the aforementioned constraint. It is because even if the agent executes an action a_t at time t and state s_t such that

$$\Pr\Big\{g(s_t, a_t) = 1\Big\} \ge 1 - \delta,\tag{1}$$

there may not be any viable action at $s_{t+1} \sim P(s_t, a_t)$ and further future states.

Difficulties and Assumptions

Difficulty 1. If the binary safety function does not exhibit any regularity, it is impossible to infer the safety of state-action pairs.

Assumption 1. There exists a known feature mapping function $\phi: \mathcal{S} \times \mathcal{A} \to \mathbb{R}^m$, unknown coefficient vectors $\mathbf{w}^* \in \mathbb{R}^m$, and a fixed, strictly increasing (inverse) link function $\mu: \mathbb{R} \to [0,1]$ such that

$$\mathbb{E}[g(s,a) \mid s,a] = \mu(f^{\star}(s,a)), \tag{2}$$

for all $(s, a) \in \mathcal{S} \times \mathcal{A}$, where $f^* : \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ is a linear predictor defined as

$$f^*(s, a) \coloneqq \langle \boldsymbol{\phi}(s, a), \boldsymbol{w}^* \rangle, \quad \forall (s, a) \in \mathcal{S} \times \mathcal{A}.$$
 (3)

Difficulty 2. The state transition is stochastic and unknown a priori. Hence, to satisfy the long-term safety constraint, we must explicitly incorporate the stochasticity of the state transition and its influence on future safety.

Assumption 2. For all $s, \bar{s} \in \mathcal{S}$ and $a, \bar{a} \in \mathcal{A}$, the feature mapping function $\phi(\cdot, \cdot)$ is Lipschitz continuous with a constant $L_{\phi} \in \mathbb{R}_{+}$; that is,

$$\|\boldsymbol{\phi}(s,a) - \boldsymbol{\phi}(\bar{s},\bar{a})\|_2 \le L_{\phi} \cdot d_{\mathcal{S}\mathcal{A}}((s,a),(\bar{s},\bar{a})), \tag{4}$$

where $d_{\mathcal{S}\mathcal{A}}(\cdot,\cdot)$ is a distance metric on $\mathcal{S}\times\mathcal{A}$. For ease of exposition, we assume that $d_{\mathcal{S}\mathcal{A}}$ satisfies $d_{\mathcal{S}\mathcal{A}}((s,a),(\bar{s},\bar{a}))=d_{\mathcal{S}}(s,\bar{s})+d_{\mathcal{A}}(a,\bar{a})$.

Assumption 3. Let $L_{\sharp} \in \mathbb{R}_{+}$ be a positive scalar. There exists a known L_{\sharp} -Lipschitz continuous policy $\pi^{\sharp} : \mathcal{S} \to \mathcal{A}$ such that, for any states $s, \bar{s} \in \mathcal{S}$,

$$d_{\mathcal{A}}(\pi^{\sharp}(s) - \pi^{\sharp}(\bar{s})) \le L_{\sharp} \cdot d_{\mathcal{S}}(s, \bar{s}). \tag{5}$$

Also, with a positive scalar $\eta \in \mathbb{R}_+$, for any policy $\pi : \mathcal{S} \to \mathcal{A}$, the following inequality holds for all $s \in \mathcal{S}$:

$$\max_{s' \sim P(\cdot | s, \pi(s))} d_{\mathcal{S}}(s, s') \leq \bar{d} + \eta \cdot d_{\mathcal{A}}(\pi(s), \pi^{\sharp}(s)).$$

To guarantee long-term safety, it is important to properly tune the maximum divergence from the conservative policy (MDCP).

Characterizing Safety

We first obtain the lower bounds of the safety linear predictor f^* :

$$\ell(s_t, a_t) := \max(\ell_{\mathsf{GLM}}(s_t, a_t), \ell_{\mathsf{Lipschitz}}(s_t, a_t)), \tag{6}$$

where $\ell_{\mathsf{GLM}}: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ and $\ell_{\mathsf{Lipschitz}}: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ are pessimistic safety linear predictors inferred by GLM and Lipshitz continuity, defined as

$$\ell_{\mathsf{GLM}}(s_t, a_t) \coloneqq \langle \boldsymbol{\phi}(s_t, a_t), \hat{\boldsymbol{w}} \rangle - \beta \cdot \| \boldsymbol{\phi}(s_t, a_t) \|_{W_n^{-1}},$$
 $\ell_{\mathsf{Lipschitz}}(s_t, a_t) \coloneqq f^\sharp(s_1) - L_1 \left\{ L_2 t + L_3 X_1^{t-1} + x_t \right\},$

Note: L_1, L_2 and L_3 are Lipschitz constants.

Theoretical Result

Theorem 1. Suppose, at state s_t , the agent executes the action a_t while tuning the MDCPs $x_t, x_{t+1}, \ldots, x_T$ so that the following inequality holds.

$$\ell(s_t, a_t) - L_1 \left\{ L_2(T - t) - (L_3 - 1)x_t + L_3 X_{t+1}^{T-1} + x_T \right\} \ge z \tag{7}$$

Set $\delta := 1 - (1 - \mu(z))^{T-t}$. Then, we have

$$\Pr\Big\{g(s_{\tau}, a_{\tau}) = 1 \ \forall \tau \in [t, T]\Big\} \ge 1 - \delta, \quad \forall t \in [T],$$

— i.e. the long-term safety constraint is satisfied — with a high probability.

Experiments

- Grid-world environment with random reward and safety.
- Instantaneous agent is much safer than Random, Unsafe, Linear baselines but sometimes violates the safety constraint.
- As for safety, LoBiSaRL is the only algorithm to guarantee the satisfaction of the safety constraint in the long run.
- LoBiSaRL is often too conservative and the performance in terms of reward is worse than Instantaneous.

	Reward	Unsafe actions
Random	0.32 ± 0.24	23.2 ± 10.3
Unsafe	1.00 ± 0.00	26.8 ± 13.6
Linear	0.73 ± 0.13	18.3 ± 5.7
Instantaneous	0.86 ± 0.10	3.3 ± 2.2
LoBiSaRL (Ours)	0.76 ± 0.12	0.0 ± 0.0

Table 2. Experimental results. Reward is normalized with respect to Unsafe agent.

References

Amani, S. et al. (2021). Safe reinforcement learning with linear function approximation. In ICML.

Amodei, D. et al. (2016). Concrete problems in Al safety. arXiv preprint arXiv:1606.06565.

Bennett, A. et al. (2023). Provable safe reinforcement learning with binary feedback. In AISTAT.

Garcia, J. and Fernández, F. (2015). A comprehensive survey on safe reinforcement learning. *JMLR*, 16(1):1437–1480.

Wachi, A. et al. (2021). Safe policy optimization with local generalized linear function approximations. In *NeurIPS*. Wachi, A. and Sui, Y. (2020). Safe reinforcement learning in constrained Markov decision processes. In *ICML*.